题目内容

将1,2,3,4,5,6,7,8,这八个数分别填写于一个圆周的八等分点上,使得圆周上任意两个相邻位置的数之和为质数,如果圆周旋转后能重合的算作相同填法,那么不同的填法有(  )
A、4种B、8种
C、12种D、16种
考点:计数原理的应用
专题:应用题,排列组合
分析:根据“八个数分别填写于一个圆周八等分点上,使得圆周上任两个相邻位置的数之和为质数”可知,圆周上的数应该奇偶相间.根据这个规律,将8个数字排列好即可.
解答: 解:∵相邻两数和为奇质数,则圆周上的数奇偶相间,
∴8的两侧为3,5,而7的两侧为4,6,
∴剩下两数1,2必相邻,且1与4,6之一邻接,
考虑三个模块【4,7,6】,【5,8,3】,【1,2】的邻接情况,得到4种填法.
故选A.
点评:本题主要考查了质数与合数的定义,考查计数原理的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网