题目内容
| AB |
| a |
| AD |
| b |
| AN |
| NC |
| BN |
-
+
| 1 |
| 4 |
| a |
| 3 |
| 4 |
| b |
-
+
(用| 1 |
| 4 |
| a |
| 3 |
| 4 |
| b |
| a |
| b |
分析:在△ABN中,利用三角形法则可得
=
+
,利用已知可得
=
,利用平行四边形法则可得
=
+
,代入即可得出.
| BN |
| BA |
| AN |
| AN |
| 3 |
| 4 |
| AC |
| AC |
| AD |
| AB |
解答:解:在△ABN中,
=
+
,
又∵
=
,
=
+
,
∴
=
+
(
+
)
=-
+
=-
+
.
故答案为:-
+
.
| BN |
| BA |
| AN |
又∵
| AN |
| 3 |
| 4 |
| AC |
| AC |
| AD |
| AB |
∴
| BN |
| BA |
| 3 |
| 4 |
| AD |
| AB |
=-
| 1 |
| 4 |
| AB |
| 3 |
| 4 |
| AD |
=-
| 1 |
| 4 |
| a |
| 3 |
| 4 |
| b |
故答案为:-
| 1 |
| 4 |
| a |
| 3 |
| 4 |
| b |
点评:熟练掌握向量的三角形法则和平行四边形法则是解题的关键.
练习册系列答案
相关题目
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|