题目内容
| AD |
| AB |
| DN |
| NB |
(1)当t=2时,证明:M、N、C三点共线;
(2)若M、N、C三点共线,求实数t的值.
分析:本题考查的知识点是向量共线定理,由在平行四边形ABCD,
=a,
=b,M为AB的中点,点N在DB上,且
=t
.
(1)当t=2时,
=2
,由M为AB中点,我们易得:
=2
,又由
与
有公共点N,故M,N,C三点共线;
(2)若M、N、C三点共线,得
=λ
(λ>0),根据ABCD为平行四边形,且M为AB的中点,我们易得到一个关于λ、t的方程,解方程后,即可求出满足条件的t值.
| AD |
| AB |
| DN |
| NB |
(1)当t=2时,
| DN |
| NB |
| NC |
| MN |
| NC |
| MN |
(2)若M、N、C三点共线,得
| NC |
| MN |
解答:证明:(1)当t=2时,
=2
,
有
=
=
(
-
)=
(b-a),
又
+
=
,
∴
=
-
=
b-
(b-a)=
b+
a;
=
-
=
-2
=b-
(b-a)=
b+
a,
则
=2
,
与
有公共点N,
于是M、N、C三点共线;
解:(2)由
=t
,
得
=
=
(b-a),
=
=
(b-a),
=
-
=b-
(b-a)=
b+
a,
=
-
=
b-
(b-a)=
b+
a,
由M、N、C三点共线,得
=λ
,
∴
b+
a=
b+
a,
得
=
,且
=
,
解得t=2或t=-1(舍去);
∴t=2.
| DN |
| NB |
有
| NB |
| 1 |
| 3 |
| DB |
| 1 |
| 3 |
| AB |
| AD |
| 1 |
| 3 |
又
| MN |
| NB |
| MB |
∴
| MN |
| MB |
| NB |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 3 |
| NC |
| DC |
| DN |
| AB |
| NB |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
则
| NC |
| MN |
| NC |
| MN |
于是M、N、C三点共线;
解:(2)由
| DN |
| NB |
得
| DN |
| t |
| t+1 |
| DB |
| t |
| t+1 |
| NB |
| 1 |
| t+1 |
| DB |
| 1 |
| t+1 |
| NC |
| DC |
| DN |
| t |
| t+1 |
| 1 |
| t+1 |
| t |
| t+1 |
| MN |
| MB |
| NB |
| 1 |
| 2 |
| 1 |
| t+1 |
| t-1 |
| 2(t+1) |
| 1 |
| t+1 |
由M、N、C三点共线,得
| NC |
| MN |
∴
| 1 |
| t+1 |
| t |
| t+1 |
| λ(t-1) |
| 2(t+1) |
| λ |
| t+1 |
得
| 1 |
| t+1 |
| λ(t-1) |
| 2(t+1) |
| t |
| t+1 |
| λ |
| t+1 |
解得t=2或t=-1(舍去);
∴t=2.
点评:若A、B、P三点共线,O为直线外一点,则
=λ
+μ
,且λ+μ=1,反之也成立,这是三点共线在向量中最常用的证明方法和性质,大家一定要熟练掌握.
| OP |
| OA |
| OB |
练习册系列答案
相关题目
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|