ÌâÄ¿ÄÚÈÝ
12£®£¨¢ñ£©Çó¸Ã¿¼³¡¿¼ÉúÖС°ÔĶÁÓë±í´ï¡±¿ÆÄ¿Öгɼ¨ÎªAµÄÈËÊý£»
£¨¢ò£©ÈôµÈ¼¶A£¬B£¬C£¬D£¬E·Ö±ð¶ÔÓ¦5·Ö£¬4·Ö£¬3·Ö£¬2·Ö£¬1·Ö£¬Çó¸Ã¿¼³¡¿¼Éú¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿µÄƽ¾ù·Ö£»
£¨¢ó£©£¨Àí¿Æ£©ÒÑÖª²Î¼Ó±¾¿¼³¡²âÊԵĿ¼ÉúÖУ¬Ç¡ÓÐÁ½È˵ÄÁ½¿Æ³É¼¨¾ùΪA£®ÔÚÖÁÉÙÒ»¿Æ³É¼¨ÎªAµÄ¿¼ÉúÖУ¬Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬ÉèÕâÁ½ÈËÖÐÁ½¿Æ³É¼¨¾ùΪAµÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
£¨ÎĿƣ©ÒÑÖª²Î¼Ó±¾¿¼³¡²âÊԵĿ¼ÉúÖУ¬Ç¡ÓÐÁ½È˵ÄÁ½¿Æ³É¼¨¾ùΪA£®ÔÚÖÁÉÙÒ»¿Æ³É¼¨ÎªAµÄ¿¼ÉúÖУ¬Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬ÇóÕâÁ½È˵ÄÁ½¿Æ³É¼¨¾ùΪAµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©ÓÉ¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿Öгɼ¨µÈ¼¶ÎªBµÄ¿¼ÉúÓÐ10ÈË£¬Çó³ö¸Ã¿¼³¡ÓÐ40ÈË£¬ÓÉ´ËÄÜÇó³ö¸Ã¿¼³¡¿¼ÉúÖС°ÔĶÁÓë±í´ï¡±¿ÆÄ¿Öгɼ¨µÈ¼¶ÎªAµÄÈËÊý£®
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÄÜÇó³ö¸Ã¿¼Éú¿¼¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿µÄƽ¾ù·Ö£®
£¨3£©£¨Àí£©Á½ÈËÖÐÁ½¿Æ³É¼¨¾ùΪAµÄÈËÊýΪ¦Î£¬¦Î¿ÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®
£¨ÎÄ£©Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬ÀûÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þ¿Õ¼ä£¬Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬ÕâÁ½È˵ÄÁ½¿Æ³É¼¨µÈ¼¶¾ùΪA°üº¬µÄ»ù±¾Ê¼þÓÐ1¸ö£¬ÓÉ´ËÄÜÇó³öÕâÁ½È˵ÄÁ½¿Æ³É¼¨¾ùΪAµÄ¸ÅÂÊ£®
½â´ð ½â£º£¨¢ñ£©ÒòΪ¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿Öгɼ¨µÈ¼¶ÎªBµÄ¿¼ÉúÓÐ10ÈË£¬
ËùÒԸÿ¼³¡ÓÐ10¡Â0.25=40ÈË£¬
ËùÒԸÿ¼³¡¿¼ÉúÖС°ÔĶÁÓë±í´ï¡±¿ÆÄ¿Öгɼ¨µÈ¼¶ÎªAµÄÈËÊýΪ£º
40¡Á£¨1-0.375-0.375-0.15-0.025£©=40¡Á0.075=3£®¡£¨3·Ö£©
£¨¢ò£©¸Ã¿¼Éú¿¼¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿µÄƽ¾ù·ÖΪ£º
1¡Á0.2+2¡Á0.1+3¡Á0.375+4¡Á0.25+5¡Á0.075=2.9£®
£¨¢ó£©£¨Àí£©Òò±ßÁ½¿Æ¿¼ÊÔÖУ¬¹²ÓÐ6È˵÷ֵȼ¶ÎªA£¬ÓÖÇ¡ÓÐÁ½È˵ÄÁ½¿Æ³É¼¨µÈ¼¶¾ùΪA£¬
ËùÒÔ»¹ÓÐÁ½ÈËÖ»ÓÐÒ»¸ö¿ÆÄ¿µÃ·ÖΪA£¬
ÉèÕâËÄÈËΪ¼×¡¢ÒÒ¡¢±û¡¢¶¡£¬ÆäÖмס¢ÒÒÊÇÁ½¿Æ³É¼¨¶¼ÊÇAµÄͬѧ£¬ÔòÔÚÖÁÉÙÒ»¿Æ³É¼¨µÈ¼¶ÎªAµÄ¿¼ÉúÖУ¬
Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬»ù±¾Ê¼þ¿Õ¼äΪ£º
¦¸={¼×¡¢ÒÒ}£¬{¼×¡¢±û}£¬{¼×¡¢¶¡}£¬{ÒÒ¡¢±û}£¬{ÒÒ¡¢¶¡}£¬{±û¡¢¶¡}£¬
ÓÐ6¸ö»ù±¾Ê¼þ£¬
Éè¡°Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬ÕâÁ½È˵ÄÁ½¿Æ³É¼¨µÈ¼¶¾ùΪA¡°ÎªÊ¼þB£¬
ËùÒÔʼþB°üº¬µÄ»ù±¾Ê¼þÓÐ1¸ö£¬ÔòP£¨B£©=$\frac{1}{6}$£¬
Á½ÈËÖÐÁ½¿Æ³É¼¨¾ùΪAµÄÈËÊýΪ¦Î£¬¦Î¿ÉÄÜȡֵΪ0£¬1£¬2£¬
P£¨¦Î=0£©=$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{1}{6}$£¬
P£¨¦Î=1£©=$\frac{{C}_{2}^{1}{C}_{2}^{1}}{{C}_{4}^{2}}$=$\frac{4}{6}$£¬
P£¨¦Î=2£©=$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{1}{6}$£¬
ËùÒԦεķֲ¼ÁÐΪ£º
| ¦Î | 0 | 1 | 2 |
| P | $\frac{1}{6}$ | $\frac{4}{6}$ | $\frac{1}{6}$ |
£¨¢ó£©£¨ÎÄ£©Òò±ßÁ½¿Æ¿¼ÊÔÖУ¬¹²ÓÐ6È˵÷ֵȼ¶ÎªA£¬ÓÖÇ¡ÓÐÁ½È˵ÄÁ½¿Æ³É¼¨µÈ¼¶¾ùΪA£¬
ËùÒÔ»¹ÓÐÁ½ÈËÖ»ÓÐÒ»¸ö¿ÆÄ¿µÃ·ÖΪA£¬
ÉèÕâËÄÈËΪ¼×¡¢ÒÒ¡¢±û¡¢¶¡£¬ÆäÖмס¢ÒÒÊÇÁ½¿Æ³É¼¨¶¼ÊÇAµÄͬѧ£¬ÔòÔÚÖÁÉÙÒ»¿Æ³É¼¨µÈ¼¶ÎªAµÄ¿¼ÉúÖУ¬
Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬»ù±¾Ê¼þ¿Õ¼äΪ£º
¦¸={¼×¡¢ÒÒ}£¬{¼×¡¢±û}£¬{¼×¡¢¶¡}£¬{ÒÒ¡¢±û}£¬{ÒÒ¡¢¶¡}£¬{±û¡¢¶¡}£¬
ÓÐ6¸ö»ù±¾Ê¼þ£¬
Éè¡°Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬ÕâÁ½È˵ÄÁ½¿Æ³É¼¨µÈ¼¶¾ùΪA¡°ÎªÊ¼þB£¬
ËùÒÔʼþB°üº¬µÄ»ù±¾Ê¼þÓÐ1¸ö£¬ÔòP£¨B£©=$\frac{1}{6}$£¬
¹ÊÕâÁ½È˵ÄÁ½¿Æ³É¼¨¾ùΪAµÄ¸ÅÂÊΪ$\frac{1}{6}$£®
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¶þÏî·Ö²¼ºÍÁоٷ¨µÄºÏÀíÔËÓã®
| A£® | x=2£¬y=1£¬z=$\frac{3}{2}$ | B£® | x=1£¬y=$\frac{1}{2}$£¬z=$\frac{1}{2}$ | C£® | x=$\frac{1}{2}$£¬y=$\frac{1}{2}$£¬z=1 | D£® | x=$\frac{1}{2}$£¬y=$\frac{1}{2}$£¬z=$\frac{2}{3}$ |