题目内容
已知向量
=(3-cos2(x+
),-2
),
=(1,sinx+cosx),x∈[-
,
],且
•
=
,求sin2x的值.
| a |
| π |
| 4 |
| 2 |
| b |
| 3π |
| 4 |
| π |
| 4 |
| a |
| b |
| 8 |
| 9 |
分析:利用平面向量数量积的坐标运算及诱导公式可求得
•
=2[sin(x+
)-1]2=
,从而可求得sin(x+
)=
,x∈[-
,
]⇒x+
∈[-
,
],于是知cos(x+
)=
,从而可求得sin2x的值.
| a |
| b |
| π |
| 4 |
| 8 |
| 9 |
| π |
| 4 |
| 1 |
| 3 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 2 |
| π |
| 4 |
2
| ||
| 3 |
解答:解:∵
•
=(3-cos2(x+
))•1-2
(sinx+cosx)
=-cos2(x+
)-4sin(x+
)+3
=2sin2(x+
)-4sin(x+
)+2
=2[sin(x+
)-1]2
=
,
∴sin(x+
)=
,
又x∈[-
,
],
∴x+
∈[-
,
],
∴cos(x+
)=
=
,
∴sin2x=-cos(2x+
)=1-cos2(x+
)=-
.
| a |
| b |
| π |
| 4 |
| 2 |
=-cos2(x+
| π |
| 4 |
| π |
| 4 |
=2sin2(x+
| π |
| 4 |
| π |
| 4 |
=2[sin(x+
| π |
| 4 |
=
| 8 |
| 9 |
∴sin(x+
| π |
| 4 |
| 1 |
| 3 |
又x∈[-
| 3π |
| 4 |
| π |
| 4 |
∴x+
| π |
| 4 |
| π |
| 2 |
| π |
| 2 |
∴cos(x+
| π |
| 4 |
1-sin2(x+
|
2
| ||
| 3 |
∴sin2x=-cos(2x+
| π |
| 2 |
| π |
| 4 |
| 7 |
| 9 |
点评:本题考查三角函数的化简求值,着重考查三角函数中的恒等变换应用及平面向量数量积的坐标运算,考查同角三角函数间的关系及诱导公式、倍角公式的综合应用,属于中档题.
练习册系列答案
相关题目