题目内容

【题目】甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).

【答案】解:(Ⅰ)解法一:由题意知,ξ的可能取值为0,1,2,3,且

所以ξ的分布列为

ξ

0

1

2

3

P

ξ的数学期望为

解法二:根据题设可知,

因此ξ的分布列为 ,k=0,1,2,3.

因为 ,所以

(Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C∪D,且C,D互斥,又 =

由互斥事件的概率公式得

解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“乙队得k分”这一事件,k=0,1,2,3.

由于事件A3B0,A2B1为互斥事件,故有P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).

由题设可知,事件A3与B0独立,事件A2与B1独立,因此P(AB)=P(A3B0)+P(A2B1)=P(A3)P(B0)+P(A2)P(B1)=


【解析】(1)解法一:由题意知,ξ的可能取值为0,1,2,3,求出相对应的概率列出分布列即可,解法二:根据题设可知, ξ ~ B ( 3 , ),E ξ = 3 × = 2,(2)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C∪D,互斥事件的概率公式得 P ( A B ),解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“乙队得k分”这一事件,可计算出概率.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网