题目内容
已知函数在R上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是_________.
如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求直线BD与平面ACFD所成角的余弦值.
在平面直角坐标系xOy中,双曲线的焦距是________________.
已知双曲线(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( )
(A)
(B)
(C)
(D)
设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.
i是虚数单位,复数满足,则的实部为_______.
甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
(A) (B) (C) (D)
圆(x+1)2+y2=2的圆心到直线y=x+3的距离为
(A)1 (B)2 (C) (D)2
已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且轴.过点A的直线l与线段交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为