题目内容
13.等比数列{an}的前n项和Sn为,并且对任意的正整n数成立Sn+2=4Sn+3,则a2=( )| A. | 2 | B. | 6 | C. | 2或6 | D. | 2或-6 |
分析 设等比数列{an}的公比为q,由等比数列可得Sn+2=q2Sn+a1(1+q),比较已知式子可得a1和q,可得a2.
解答 解:设等比数列{an}的公比为q,由等比数列可得Sn+1=qSn+a1,
∴Sn+2=q(qSn+a1)+a1=q2Sn+a1(1+q),
由已知式子Sn+2=4Sn+3比较可得q2=4,a1(1+q)=3,
联立解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=-3}\\{q=-2}\end{array}\right.$,
∴当$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$时,a2=a1q=2;
当$\left\{\begin{array}{l}{{a}_{1}=-3}\\{q=-2}\end{array}\right.$时,a2=a1q=6.
故选:C
点评 本题考查等比数列的求和公式和通项公式,得出Sn+2=q2Sn+a1(1+q)是解决问题的关键,属中档题.
练习册系列答案
相关题目