ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªF1£¨-c£¬0£©£¬F2£¨c£¬0£©·Ö±ðÊÇÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÇÒ|F1F2|=2$\sqrt{3}$£¬ÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£®£¨1£©ÇóÍÖÔ²MµÄ±ê×¼·½³Ì£»£¨2£©¹ýÍÖÔ²ÓÒ½¹µãF2×÷Ö±Ïßl½»ÍÖÔ²MÓÚA£¬BÁ½µã£®
¢Ùµ±Ö±ÏßlµÄбÂÊΪ1ʱ£¬ÇóÏß¶ÎABµÄ³¤£»
¢ÚÈôÍÖÔ²MÉÏ´æÔÚµãP£¬Ê¹µÃÒÔOA£¬OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ¨OÎª×ø±êԵ㣩£¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö £¨1£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©¢ÙÉèÖ±Ïßl£ºy=x-$\sqrt{3}$£¬´úÈëÍÖÔ²·½³Ì£¬Çó³ö·½³ÌµÄ¸ù£¬¼´¿ÉÇóÏß¶ÎABµÄ³¤£»
¢Ú¼ÙÉèÍÖÔ²ÉÏ´æÔÚµãP£¨m£¬n£©£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ®ÉèÖ±Ïß·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬Ôòm=x1+x2£¬n=y1+y2£¬ÇóµÃPµÄ×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉµÃµ½k£¬¼´¿ÉÅжÏPµÄ´æÔÚºÍÖ±Ïߵķ½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬2c=2$\sqrt{3}$£¬µÃ$c=\sqrt{3}$£¬
ÓÖ$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬¡àa=2£¬b2=a2-c2=1£¬
¡àÍÖÔ²MµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©¢Ù¿ÉÉèÖ±Ïß·½³ÌΪy=x-$\sqrt{3}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ5x2-8$\sqrt{3}$x+8=0£¬
¡àx=$\frac{4\sqrt{3}¡À2\sqrt{2}}{5}$£¬¡àÏÒABµÄ³¤Îª$\sqrt{2}¡Á\frac{4\sqrt{2}}{5}=\frac{8}{5}$£»
¢Ú¼ÙÉèÍÖÔ²ÉÏ´æÔÚµãP£¨m£¬n£©£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ®
ÉèÖ±Ïß·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+4k2£©x2-8$\sqrt{3}$k2x+12k2-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬Ôòm=x1+x2£¬n=y1+y2£¬
x1+x2=$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{12{k}^{2}-4}{1+4{k}^{2}}$£¬
y1+y2=k£¨x1+x2-2$\sqrt{3}$£©=k£¨$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$-2$\sqrt{3}$£©=$\frac{-2\sqrt{3}}{1+4{k}^{2}}$£¬
¼´ÓÐP£¨$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$£¬$\frac{-2\sqrt{3}}{1+4{k}^{2}}$£©£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{48{k}^{4}}{£¨1+4{k}^{2}£©^{2}}+\frac{12{k}^{2}}{£¨1+4{k}^{2}£©^{2}}=1$£¬
½âµÃk2=$\frac{1}{8}$£¬¼´k=¡À$\frac{\sqrt{2}}{4}$£¬
¹Ê´æÔÚµãP£¨$\frac{\sqrt{3}}{3}£¬-\frac{\sqrt{6}}{6}$£©£¬»ò£¨$\frac{\sqrt{3}}{3}£¬\frac{\sqrt{6}}{6}$£©£¬
ÔòÓÐÖ±Ïßl£ºy=$\frac{\sqrt{2}}{4}x-\frac{\sqrt{6}}{4}$»òy=-$\frac{\sqrt{2}}{4}x+\frac{\sqrt{6}}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÀëÐÄÂʹ«Ê½ºÍ·½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâ
| A£® | EF¡ÎÆ½ÃæABCD | B£® | AC¡ÍBE | ||
| C£® | ÈýÀâ×¶A-BEFÌå»ýΪ¶¨Öµ | D£® | ¡÷BEFÓë¡÷AEFÃæ»ýÏàµÈ |
| A£® | $\left\{\begin{array}{l}{x={t}^{2}+1}\\{y=0}\end{array}\right.$£¨tΪ²ÎÊý£© | B£® | $\left\{\begin{array}{l}{x=0}\\{y=3t+1}\end{array}\right.$£¨tΪ²ÎÊý£© | ||
| C£® | $\left\{\begin{array}{l}{x=1+sin¦È}\\{y=0}\end{array}\right.$£¨¦ÈΪ²ÎÊý£© | D£® | $\left\{\begin{array}{l}{x=4t+1}\\{y=0}\end{array}\right.$£¨tΪ²ÎÊý£© |
| A£® | a£¼1£¼b | B£® | a£¼b£¼1 | C£® | 1£¼a£¼b | D£® | b£¼1£¼a |