题目内容

过O极点引直线交圆ρ2+r2-2rρcosθ-a2=0(r>a>0)于P,Q两点,在此直线上取一点R,使得
2
OR
=
1
OP
+
1
OQ
,求R点的轨迹的极坐标方程(r,a是常数).
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把圆的极坐标方程化为直角坐标方程,设出直线的直角坐标方程,代入圆的方程,利用韦达定理及条件求得 xR=
r2-a2
r
,再把它化为极坐标方程.
解答: 解:圆ρ2+r2-2rρcosθ-a2=0(r>a>0)化为直角坐标方程为 (x-r)2+y2=a2
表示以(r,0)为圆心、半径等于a的圆.
设直线的直角坐标方程设为y=kx,代入圆的方程化简可得 (k2+1)x2-2rx+r2-a2=0,
利用韦达定理可得 xP+xQ=
2r
k2+1
,xP•xQ=
r2-a2
k2+1

再根据
2
OR
=
1
OP
+
1
OQ
,可得
2
xR
=
1
xP
+
1
xQ
=
xP+xQ
xP•xQ
=
2r
r2-a2

求得 xR=
r2-a2
r
,再化为极坐标方程为 ρcosθ=
r2-a2
r
点评:本题主要考查点的极坐标与直角坐标的互化,一元二次方程根与系数的关系,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网