题目内容
19.若z2+z+1=0,则z2002+z2003+z2005+z2006等于( )| A. | 2 | B. | -2 | C. | -$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i | D. | -$\frac{1}{2}$±$\frac{\sqrt{3}}{2}$i |
分析 求出z,根据z的特点计算z2001和z2004.
解答 解:设z=a+bi,a,b∈R,则z2+z+1=a2-b2+a+(2ab+b)i=0,
∴$\left\{\begin{array}{l}{{a}^{2}-{b}^{2}+a=0}\\{2ab+b=0}\end{array}\right.$,解得a=-$\frac{1}{2}$,b=±$\frac{\sqrt{3}}{2}$i,∴z=-$\frac{1}{2}$±$\frac{\sqrt{3}}{2}i$,∴z3=1.
∵z2+z+1=0,∴z+z2=-1,
∴z2002+z2003+z2005+z2006=z2001(z+z2)+z2004(z+z2)=-z2001-z2004.
∵z3=1,∴z2001=z2004=z3=1,
∴z2002+z2003+z2005+z2006=-1-1=-2.
故选:B.
点评 本题考查了复数的运算,复数的性质应用,观察z3=1是解题关键.
练习册系列答案
相关题目
7.设函数y=f(cosx)是可导函数,则y′等于( )
| A. | f′(sinx) | B. | -f′(sinx) | C. | f′(cosx)sinx | D. | -f′(cosx)sinx |
17.已知定义域为R的偶函数f(x)的图象关于直线x=4对称,当x∈[0,4]时,f(x)可导且满足f′(x)>2f(x),则有( )
| A. | e2f(-15)<f(-6),e2f(-11)<f(-20) | B. | e2f(-15)>f(-6),e2f(-11)>f(-20) | ||
| C. | e2f(-15)<f(-6),e2f(-11)>f(-20) | D. | e2f(-15)>f(-6),e2f(-11)<f(-20) |