题目内容
17.若复数z=(a2-4)+(a+2)i为纯虚数,则复数$\frac{a+i}{1-i}$在复平面上对应的点位于第一象限.分析 利用复数的运算法则、纯虚数的定义、几何意义即可得出.
解答 解:z=(a2-4)+(a+2)i为纯虚数,∴a2-4=0,a+2≠0.解得a=2.
则复数$\frac{a+i}{1-i}$=$\frac{2+i}{1-i}$=$\frac{(2+i)(1+i)}{(1-i)(1+i)}$=$\frac{1}{2}+\frac{3}{2}$i在复平面上对应的点$(\frac{1}{2},\frac{3}{2})$位于第 一象限.
故答案为:一.
点评 本题考查了复数的运算法则、纯虚数的定义、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
7.
经过分析,发现售量y对商的价格x具有线性相关系.
在2013春节间市价部门,对本五商场销售的某商天的销售及其价格进行调查,五个商场的售价x元和销量件之的一组数据表所示:欲销售量为12,价格应定为少.
附:在回归直线y=$\widehat{b}$x+$\widehat{a}$中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.
| 价格x | 9 | 9.5 | 10 | 10.5 | 11 |
| 售量y | 11 | 10 | 8 | 6 | 5 |
在2013春节间市价部门,对本五商场销售的某商天的销售及其价格进行调查,五个商场的售价x元和销量件之的一组数据表所示:欲销售量为12,价格应定为少.
附:在回归直线y=$\widehat{b}$x+$\widehat{a}$中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.
5.
如图所示,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且 PA=AB=2,AC=1,点E是PD的中点.
(1)求证:PB∥平面AEC;
(2)求二面角E-AC-B的大小.
(1)求证:PB∥平面AEC;
(2)求二面角E-AC-B的大小.
12.已知三点坐标A(0,-4),B(4,0),C(-6,2),点D,E,F分别为线段BC,CA,AB的中点,则直线EF的方程为( )
| A. | x+5y+8=0 | B. | x-y+2=0 | C. | x+y=0 | D. | x+y+4=0 |
2.已知向量$\overrightarrow a$,$\overrightarrow b$不共线,且对任意实数x,不等式$|{\overrightarrow a-x\overrightarrow b}|≥|{\overrightarrow a-\overrightarrow b}|$恒成立,则下列结论一定成立的是( )
| A. | $\overrightarrow a$•$\overrightarrow b$-${\overrightarrow b^2}$=0 | B. | ${\overrightarrow a^2}-\overrightarrow a$•$\overrightarrow b$=0 | C. | $\overrightarrow a$⊥$\overrightarrow b$ | D. | $|{\overrightarrow a}|=|{\overrightarrow b}|$ |
7.已知圆A:x2+y2=1在伸缩变换$\left\{{\begin{array}{l}{x'=2x}\\{y'=3y}\end{array}}\right.$的作用下变成曲线C,则曲线C的方程为( )
| A. | 2x2+3y2=1 | B. | 4x2+9y2=1 | C. | $\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1 |