题目内容

定义一种运算“*”对于正整数N满足以下运算性质:(1)1*1=1(2)(n+1)*1=n*1+1,则n*1=(  )
A、n
B、n+1
C、n-1
D、n2
考点:进行简单的合情推理
专题:规律型,等差数列与等比数列
分析:根据定义中的运算法则,对(n+1)*1=n*1+1反复利用,即逐步改变“n”的值,直到得出运算结果.
解答: 解:∵1*1=1,(n+1)*1=n*1+1,
∴(n+1)*1=n*1+1=(n-1)*1+1+1=(n-2)*1+3=…=[n-(n-1)]*1+n=1+n,
∴n*1=n.
故选A.
点评:本题题型是给出新的运算利用运算性质进行求值,主要抓住运算的本质,改变式子中字母的值再反复运算性质求出值,考查了观察能力和分析、解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网