ÌâÄ¿ÄÚÈÝ
ijÆóÒµ¹²ÓÐ20ÌõÉú²úÏߣ¬ÓÉÓÚÊÜÉú²úÄÜÁ¦ºÍ¼¼ÊõˮƽµÈÒòËØµÄÓ°Ï죬»á²úÉúÒ»¶¨Á¿µÄ´ÎÆ·.¸ù¾Ý¾ÑéÖªµÀ£¬Ã¿Ì¨»úÆ÷²úÉúµÄ´ÎÆ·Êý
Íò¼þÓëÿ̨»úÆ÷µÄÈÕ²úÁ¿
Íò¼þ
Ö®¼äÂú×ã¹ØÏµ£º
.ÒÑ֪ÿÉú²ú1Íò¼þºÏ¸ñµÄ²úÆ·¿ÉÒÔÒÔÓ¯Àû3ÍòÔª£¬µ«Ã¿Éú²ú1Íò¼þ´ÎÆ·½«¿÷Ëð1ÍòÔª.
£¨¢ñ£©ÊÔ½«¸ÃÆóҵÿÌìÉú²úÕâÖÖ²úÆ·Ëù»ñµÃµÄÀûÈó
±íʾΪ
µÄº¯Êý£»
£¨¢ò£©µ±Ã¿Ì¨»úÆ÷µÄÈÕ²úÁ¿Îª¶àÉÙʱ£¬¸ÃÆóÒµµÄÀûÈó×î´ó£¬×î´óΪ¶àÉÙ£¿
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®Èô¸´Êý$z=\frac{-2+3i}{i}£¬i$ÊÇÐéÊýµ¥Î»£¬ÔòzµÄ¹²éÊý$\overline z$ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
17£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{x}^{2}}{{e}^{x}}$£¬x¡Ù0£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬¹ØÓÚxµÄ·½³Ì$\sqrt{f£¨x£©}$+$\frac{2}{\sqrt{f£¨x£©}}$-¦Ë=0ÓÐËĸöÏàÒìʵ¸ù£¬ÔòʵÊý¦ËµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬$\frac{2}{e}$£© | B£® | £¨2$\sqrt{2}$£¬+¡Þ£© | C£® | £¨e+$\frac{2}{e}$£¬+¡Þ£© | D£® | £¨$\frac{{e}^{2}}{2}$+$\frac{4}{{e}^{2}}$£¬+¡Þ£© |
6£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{\frac{1}{x}£¬x£¼0}\\{\frac{lnx}{x}£¬x£¾0}\end{array}\right.$£¬Èôº¯ÊýF£¨x£©=f£¨x£©-kxÔÚRÉÏÓÐ3¸öÁãµã£¬ÔòʵÊýkµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A£® | £¨0£¬$\frac{1}{e}$£© | B£® | £¨0£¬$\frac{1}{2e}$£© | C£® | £¨-¡Þ£¬$\frac{1}{2e}$£© | D£® | £¨$\frac{1}{2e}$£¬$\frac{1}{e}$£© |