题目内容

不等式组
2x-y+1≥0
x-2y-1≤0
x+y≤1
表示的平面区域为(  )
A、正三角形及其内部
B、等腰三角形及其内部
C、在第一象限内的一个无界区域
D、不包含第一象限内的点的一个有界区域
分析:画出约束条件表示的可行域,然后取特殊值判断选项的正误.
解答:精英家教网解:将(0,0)代入不等式组适合C,不对;
将(
1
2
1
2
)代入不等式组适合D,不对;
又知2x-y+1=0与x-2y-1=0关于y=x对称且所夹顶角α满足tanα=
|2-
1
2
|
|1+2•
1
2
|
=
3
4

∴α≠
π
3
.所以A不正确.
故选B.
点评:本题考查二元一次不等式(组)与平面区域,考查作图能力,逻辑推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网