题目内容
若log2ax1=logax2=log(a+1)x3>0(0<a<1),则x1,x2,x3的大小关系为( )A.x3<x2<x1 B.x2<x1<x3 C.x1<x3<x2 D.x2<x3<x1
解析:设log2ax1=logax2=log(a+1)x3=k,则x1=(
)k,x2=ak,x3=(a+1)k,设函数f(x)=xk(k>0),则当x>0时,f(x)=xk是增函数.又0<a<1,则2a>a+1>a.所以有(2a)k>(a+1)k>ak,即x2<x3<x1.故选D.
答案:D
练习册系列答案
相关题目
若log
x1=logax2=log(a+1)x3>0(0<a<1),则x1,x2,x3的大小关系是( )
| 2 |
| a |
| A、x3<x2<x1 |
| B、x2<x1<x3 |
| C、x2<x3<x1 |
| D、x1<x3<x2 |