题目内容

14.设集合A={y|y=x2+ax+1,x∈R},B={x|x<0},若A∩B=∅,A∪B=R,则实数a的取值集合是{-2,2}.

分析 由题意,A={y|y=x2+ax+1,x∈R}={y|y≥0},利用判别式可得结论.

解答 解:由题意,A={y|y=x2+ax+1,x∈R}={y|y≥0},
∴△=a2-4=0,
∴a=±2,
∴实数a的取值集合是{-2,2}.
故答案为:{-2,2}.

点评 本题考查集合的包含关系,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网