题目内容
1.与椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1有相同的焦点,且经过点P($\sqrt{2}$,-$\sqrt{2}$)的双曲线的离心率为( )| A. | 3 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
分析 求得椭圆的焦点,设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,设c=$\sqrt{3}$,即a2+b2=3,又点P($\sqrt{2}$,-$\sqrt{2}$)在双曲线上,代入P的坐标,解方程可得a,b,可得c,由离心率公式可得所求值.
解答 解:椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1的焦点为(±$\sqrt{3}$,0),
设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
设c=$\sqrt{3}$,即a2+b2=3,
又点P($\sqrt{2}$,-$\sqrt{2}$)在双曲线上,可得:
$\frac{2}{{a}^{2}}$-$\frac{2}{{b}^{2}}$=1,
解得a=1,b=$\sqrt{2}$,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{3}$,
可得离心率e=$\frac{c}{a}$=$\sqrt{3}$.
故选:B.
点评 本题考查双曲线的离心率的求法,注意运用椭圆的焦点和点满足双曲线的方程,考查运算能力,属于基础题.
练习册系列答案
相关题目
12.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若△ABE是钝角三角形,则该双曲线的离心率e的取值范围是( )
| A. | (1,+∞) | B. | (1,2) | C. | (1,1+$\sqrt{2}$) | D. | (2,+∞) |
9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线的方程为y=-$\sqrt{2}$x,则该双曲线的离心率为( )
| A. | $\frac{3}{2}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | 3 | D. | $\sqrt{3}$ |
13.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$,其渐近线与圆(x-6)2+y2=16相切,则该双曲线的离心率为( )
| A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
10.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若F2关于直线y=$\frac{a}{b}$x的对称点恰好在双曲线上,则该双曲线的离心率是( )
| A. | $\sqrt{5}$-1 | B. | $\sqrt{5}$+1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
11.已知函数f(x)的定义域和值域都是{1,2,3,4,5},其对应关系如表所示,则f(4)=1.
| x | 1 | 2 | 3 | 4 | 5 |
| f(x) | 5 | 4 | 3 | 1 | 2 |