题目内容
6.有4个不同的球,4个不同的盒子,把球全部放入盒内:(1)恰有1个盒内有2个球,共有几种放法?
(2)恰有2个盒不放球,共有几种放法?
分析 (1)先选两个元素作为一组再排列,恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,根据分步计数原理得到结果.
(2)先分类,把四个小球先分成两组,每组两个小球,或者是把四个小球分成两组,每组一个和三个,分完小组后再进行排列,从4个盒中选两个位置排列,得到结果.
解答 解:(1)根据题意,分三步进行分析:
第一步,从4个小球中取两个小球,有C42种方法;
第二步,将取出的两个小球放入一个盒内,有C41种方法;
第三步,在剩下的三个盒子中选两个放剩下的两个小球,有A32种方法;
由分步计数原理,共有C42•C41•A32=144种放法.
(2)根据题意,分2种情况讨论:
第一类,一个盒子放3个小球,一个盒子放1个小球,两个盒子不放小球有C41•C43•C31=48种方法;
第二类,有两个盒子各放2个小球,另两个盒子不放小球有C42•C42=36种方法;
由分类计数原理,共有48+36=84种放法.
点评 本题考查排列、组合的应用,涉及分类、分步计数原理的应用,关键是转化问题.
练习册系列答案
相关题目
16.射洪县教育局从去年参加了计算机职称考试,并且年龄在[25,55]岁的教师中随机抽取n人的成绩进行了调查,得到如下统计表和各年龄段人数频率分布直方图:
(1)补全频率分布直方图,并求a、p、q的值;
(2)若用以上数据来估计今年参考老师的过关情况,并将每组的频率视作对应年龄阶段老师的过关概率,考试是否过关互不影响.现有三名教师参加该次考试,年龄分别为41岁、47岁、53岁.记ξ为过关的人数,请利用相关数据求ξ的分布列和数学期望.
| 组数 | 分组 | 低碳族的人数 | 占本组的频率 |
| 第一组 | [25,30) | 120 | 0.6 |
| 第二组 | [30,35) | 195 | p |
| 第三组 | [35,40) | 100 | 0.5 |
| 第四组 | [40,45) | a | 0.4 |
| 第五组 | [45,50) | 30 | q |
| 第六组 | [50,55) | 15 | 0.3 |
(2)若用以上数据来估计今年参考老师的过关情况,并将每组的频率视作对应年龄阶段老师的过关概率,考试是否过关互不影响.现有三名教师参加该次考试,年龄分别为41岁、47岁、53岁.记ξ为过关的人数,请利用相关数据求ξ的分布列和数学期望.