题目内容

7.在Rt△ABC中,A=$\frac{π}{2}$,AB=2,AC=2$\sqrt{3}$,线段EF在斜边BC上运动,且EF=1,设∠EAF=θ,则tanθ的取值范围是[$\frac{\sqrt{3}}{9}$,$\frac{4\sqrt{3}}{11}$].

分析 如图建立直角坐标系,设BF=k,k∈[0,3].得F(2-$\frac{1}{2}k$,$\frac{\sqrt{3}}{2}k$),E($\frac{3}{2}-\frac{1}{2}k$,$\frac{\sqrt{3}}{2}(k+1)$).
tan∠EAB=$\frac{\sqrt{3}(k+1)}{3-k}$,tan∠FAB=$\frac{\sqrt{3}k}{4-k}$,.tanθ=tan(∠EAB-∠FAB)=$\frac{\sqrt{3}}{{k}^{2}-k+3}$;即可求取值范围.

解答 解:如图建立直角坐标系,设BF=k,k∈[0,3].
∴∠B=60°,∴F(2-$\frac{1}{2}k$,$\frac{\sqrt{3}}{2}k$),E($\frac{3}{2}-\frac{1}{2}k$,$\frac{\sqrt{3}}{2}(k+1)$).
∴tan∠EAB=$\frac{\sqrt{3}(k+1)}{3-k}$,tan∠FAB=$\frac{\sqrt{3}k}{4-k}$,.
tanθ=tan(∠EAB-∠FAB)=$\frac{\sqrt{3}}{{k}^{2}-k+3}$;
∵k∈[0,3].∴${k}^{2}-k+3∈[\frac{11}{4},9]$,tanθ的取值范围是[$\frac{\sqrt{3}}{9},\frac{4\sqrt{3}}{11}$]
故答案为[$\frac{\sqrt{3}}{9},\frac{4\sqrt{3}}{11}$].

点评 本题考查了建立坐标系解决平面几何问题,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网