题目内容
15.m=2018是直线mx+(m-2017)y-2=0和直线x-my+5=0垂直的( )| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
分析 根据直线垂直的等价条件求出a的范围,结合充分条件和必要条件的定义进行判断即可.
解答 解:若直线mx+(m-2017)y-2=0和直线x-my+5=0垂直,
则m-m(m-2017)=0,
得m(1-m+2017)=0,
即m(m-2018)=0,
得m=0或m=2018,
则m=2018是直线mx+(m-2017)y-2=0和直线x-my+5=0垂直的充分不必要条件,
故选:A
点评 本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.
练习册系列答案
相关题目
7.某市从2011年起每年在国庆期间都举办一届国际水上狂欢节,该市旅游部门将前五届水上狂欢节期间外地游客到该市旅游的人数统计如下表:
(1)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(2)该市旅游部门估计,每位外地游客可为该市增加100元的旅游收入,请你利用(1)的线性回归方程,预测2017年第七届国际水上狂欢节期间外地游客可为该市增加多少旅游收入?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x}){\;}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 水上狂欢节编号x | 1 | 2 | 3 | 4 | 5 |
| 外地游客人数y(单位:十万) | 0.6 | 0.8 | 0.9 | 1.2 | 1.5 |
(2)该市旅游部门估计,每位外地游客可为该市增加100元的旅游收入,请你利用(1)的线性回归方程,预测2017年第七届国际水上狂欢节期间外地游客可为该市增加多少旅游收入?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x}){\;}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
3.设$\overrightarrow a,\overrightarrow b$都是非零向量,下列四个条件中,一定能使$\frac{\overrightarrow a}{|\overrightarrow a|}+\frac{\overrightarrow b}{|\overrightarrow b|}=0$成立的是( )
| A. | $\overrightarrow a⊥\overrightarrow b$ | B. | $\overrightarrow a$∥$\overrightarrow b$ | C. | $\overrightarrow a=2\overrightarrow b$ | D. | $\overrightarrow a=-\overrightarrow b$ |
10.已知直线m,n和平面α,满足m?α,n?α.则“m∥n”是“m∥α”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
7.已知圆的半径为π,则60°圆心角所对的弧长为( )
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{{π}^{2}}{3}$ | D. | $\frac{2{π}^{2}}{3}$ |
8.已知$sin(α+\frac{13π}{6})+cosα=-\frac{1}{3}$,则$cos(\frac{π}{6}-α)$=( )
| A. | $-\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $-\frac{{\sqrt{3}}}{9}$ | D. | $\frac{{\sqrt{3}}}{9}$ |