ÌâÄ¿ÄÚÈÝ

7£®Ä³ÊдÓ2011ÄêÆðÿÄêÔÚ¹úÇìÆÚ¼ä¶¼¾Ù°ìÒ»½ì¹ú¼ÊË®ÉÏ¿ñ»¶½Ú£¬¸ÃÊÐÂÃÓβ¿ÃŽ«Ç°Îå½ìË®ÉÏ¿ñ»¶½ÚÆÚ¼äÍâµØÓο͵½¸ÃÊÐÂÃÓεÄÈËÊýͳ¼ÆÈçÏÂ±í£º
Äê·Ý20112012201320142015
Ë®ÉÏ¿ñ»¶½Ú±àºÅx12345
ÍâµØÓοÍÈËÊýy£¨µ¥Î»£ºÊ®Íò£©0.60.80.91.21.5
£¨1£©Çóy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$ 
£¨2£©¸ÃÊÐÂÃÓβ¿ÃŹÀ¼Æ£¬Ã¿Î»ÍâµØÓοͿÉΪ¸ÃÊÐÔö¼Ó100ÔªµÄÂÃÓÎÊÕÈ룬ÇëÄãÀûÓã¨1£©µÄÏßÐԻع鷽³Ì£¬Ô¤²â2017ÄêµÚÆß½ì¹ú¼ÊË®ÉÏ¿ñ»¶½ÚÆÚ¼äÍâµØÓοͿÉΪ¸ÃÊÐÔö¼Ó¶àÉÙÂÃÓÎÊÕÈ룿
$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©{\;}^{2}}$£¬$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö»Ø¹éϵÊý£¬Ð´³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì£» 
£¨2£©ÀûÓã¨1£©µÄÏßÐԻع鷽³Ì¼ÆËãx=7ʱ$\widehat{y}$µÄÖµ£¬
Çó³ö2017ÄêµÚÆß½ì¹ú¼ÊË®ÉÏ¿ñ»¶½ÚÆÚ¼äÍâµØÓοͿÉΪ¸ÃÊÐÔö¼ÓµÄÂÃÓÎÊÕÈ룮

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬¼ÆËã$\overline{x}$=$\frac{1}{5}$¡Á£¨1+2+3+4+5£©=3£¬
$\overline{y}$=$\frac{1}{5}$¡Á£¨0.6+0.8+0.9+1.2+1.5£©=1£¬
$\sum_{i=1}^{5}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=£¨-2£©¡Á£¨-0.4£©+£¨-1£©¡Á£¨-0.2£©+0¡Á£¨-0.4£©+1¡Á0.2+2¡Á0.5=2.2£¬
$\sum_{i=1}^{5}$${{£¨x}_{i}-\overline{x}£©}^{2}$=£¨-2£©2+£¨-1£©2+02+12+22=10£»
¡à$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©{\;}^{2}}$=$\frac{2.2}{10}$=0.22£¬
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=1-0.22¡Á3=0.34£¬
¡ày¹ØÓÚxµÄÏßÐԻع鷽³ÌΪ$\widehat{y}$=0.22x+0.34£» 
£¨2£©ÀûÓã¨1£©µÄÏßÐԻع鷽³Ì£¬¼ÆËãx=7ʱ£¬
$\widehat{y}$=0.22¡Á7+0.34=1.88£¬
ÇÒ1.88¡Á100=188£¨ÍòÔª£©£»
Ô¤²â2017ÄêµÚÆß½ì¹ú¼ÊË®ÉÏ¿ñ»¶½ÚÆÚ¼äÍâµØÓοͿÉΪ¸ÃÊÐÔö¼Ó188ÍòÔªÂÃÓÎÊÕÈ룮

µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÍÆÀíÓë¼ÆËãÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø