题目内容
3.10001000(2)转化为八进制数是210(8).分析 根据二进制转化为八进制的方法,我们从右往左把二进制数每三位分成一段,然后把每一段的数转化为对应的八进制数即可得到结果.
解答 解:10001000(2)=10 001 000(2)=210(8),
故答案为:210(8)
点评 本题考查的知识点是不同进制数之间的转换,解答的关键是熟练掌握不同进制之间数的转化规则.
练习册系列答案
相关题目
13.已知O为坐标原点,$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-2,-1),则$\frac{|\overrightarrow{AB}|}{\overrightarrow{OA}•\overrightarrow{OB}}$=( )
| A. | -$\frac{3\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | -$\frac{3\sqrt{2}}{4}$ | D. | $\frac{3\sqrt{2}}{4}$ |
8.与向量$\overrightarrow{a}$=(1,3,-2)平行的一个向量的坐标是( )
| A. | ($\frac{1}{3}$,1,1) | B. | (-$\frac{1}{2}$,-$\frac{3}{2}$,1) | C. | (-$\frac{1}{2}$,$\frac{3}{2}$,-1) | D. | ($\sqrt{2}$,-3,-2$\sqrt{2}$) |
15.曲线y=x3+sinx在点O(0,0)处切线方程是( )
| A. | y=x | B. | y=2x | C. | y=3x | D. | y=4x |
12.
已知f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的图象的一部分如图所示,则f(x)解析式是( )
| A. | f(x)=2sin($\frac{1}{2}$x-$\frac{π}{4}$) | B. | f(x)=2sin($\frac{1}{2}$x+$\frac{3π}{4}$) | C. | f(x)=2sin(2x-$\frac{π}{4}$) | D. | f(x)=2sin(2x+$\frac{3π}{4}$) |
13.函数$y=cos(-x)cos(\frac{π}{2}-x)$的最小正周期是( )
| A. | $\frac{π}{2}$ | B. | π | C. | $\frac{3π}{2}$ | D. | 2π |