题目内容

在O点测量到远处有一物体在作等速直线运动,开始时该物位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过一分钟后,该物体位于R点,且∠QOR=30°,则tan2∠OPQ 等于(  )
分析:在△ORQ与△OPQ中,利用正弦定理分别求OQ,即可求tan∠OPQ,从而可得结论.
解答:解:设PQ=x,则QR=x,
∵∠POQ=90°,∠QOR=30°,∴∠OPQ+∠R=60°,即∠R=60°-∠OPQ,
在△ORQ中,由正弦定理得:
OQ
sinR
=
xsinR
sin30°
,即OQ=2x•sin(60°-∠OPQ);
在△OPQ中,同理可求得:OQ=xsin∠OPQ,
∴2x•sin(60°-∠OPQ)=x•sin∠OPQ,①,
由于x=PQ>0,
将①整理可得,
3
cos∠OPQ-sin∠OPQ=sin∠OPQ,即2sin∠OPQ=
3
cos∠OPQ,
∴tan∠OPQ=
3
2

∴tan2∠OPQ=
3
4

故选B.
点评:本题考查了利用正弦定理解决实际问题,求解实际问题的关键是要把实际问题转化为数学问题,利用数学知识进行求解,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网