题目内容
设{an}是等差数列,且各项均为非零实数,sn是数列{an}的前n项和.
(1)若等式
+
+…+
=
对任意n(n∈N+)恒成立,其中k、b是常数,求k、b的值;
(2)对于给定的正整数n(n>1)和正数m,数列{an}满足条件a12+a(n+1)2≤m,求sn的最大值.
(1)若等式
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| kn+b |
| a1an+1 |
(2)对于给定的正整数n(n>1)和正数m,数列{an}满足条件a12+a(n+1)2≤m,求sn的最大值.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)设公差为d,
=
=
(
-
),由此利用裂项求和法求出
+
+…+
=
=
,从而得到k=1,b=0.
(2)由a12+an+12≤m,得2a1an+1≤a12+an+12≤m,所以(a1+an+11)2≤2m,由此能求出Sn的最大值.
| 1 |
| anan+1 |
| 1 |
| [a1+(n-1)d](a1+nd) |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| n |
| a1an+1 |
| kn+b |
| a1an+1 |
(2)由a12+an+12≤m,得2a1an+1≤a12+an+12≤m,所以(a1+an+11)2≤2m,由此能求出Sn的最大值.
解答:
(1)设公差为d,
=
=
(
-
),
∴
+
+…+
=
(
-
+
-
+…+
-
)
=
(
-
)
=
•
=
•
=
=
,
∴k=1,b=0.
(2)∵a12+an+12≤m,
∴由均值不等式得2a1an+1≤a12+an+12≤m
∴(a1+an+11)2≤2m
|a1+an+1|≤
m,
Sn=
(a1+an+1)≤
|a1+an+1|≤
,
∴Sn≤
,当n=1时,
有最大值2
,
Sn≤2
,Sn的最大值为2
.
| 1 |
| anan+1 |
| 1 |
| [a1+(n-1)d](a1+nd) |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
∴
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| an+1 |
=
| 1 |
| d |
| an+1-an |
| a1an+1 |
=
| 1 |
| d |
| nd |
| a1an+1 |
=
| n |
| a1an+1 |
=
| kn+b |
| a1an+1 |
∴k=1,b=0.
(2)∵a12+an+12≤m,
∴由均值不等式得2a1an+1≤a12+an+12≤m
∴(a1+an+11)2≤2m
|a1+an+1|≤
| 2 |
Sn=
| n |
| 2 |
| n |
| 2 |
| 2m |
∴Sn≤
2
| ||
| n |
2
| ||
| n |
| 2m |
Sn≤2
| 2m |
| 2m |
点评:本题考查常数值的求法,考查数列前n项和的最大值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
函数y=
的单调递减区间是( )
| lnx |
| x |
| A、(e-1,+∞) |
| B、(0,e-1) |
| C、(-∞,e-1) |
| D、(e,+∞) |