题目内容

设{an}是等差数列,且各项均为非零实数,sn是数列{an}的前n项和.
(1)若等式
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
kn+b
a1an+1
对任意n(n∈N+)恒成立,其中k、b是常数,求k、b的值;
(2)对于给定的正整数n(n>1)和正数m,数列{an}满足条件a12+a(n+12≤m,求sn的最大值.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)设公差为d,
1
anan+1
=
1
[a1+(n-1)d](a1+nd)
=
1
d
(
1
an
-
1
an+1
)
,由此利用裂项求和法求出
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
n
a1an+1
=
kn+b
a1an+1
,从而得到k=1,b=0.
(2)由a12+an+12≤m,得2a1an+1≤a12+an+12≤m,所以(a1+an+11)2≤2m,由此能求出Sn的最大值.
解答: (1)设公差为d,
1
anan+1
=
1
[a1+(n-1)d](a1+nd)
=
1
d
(
1
an
-
1
an+1
)

1
a1a2
+
1
a2a3
+…+
1
anan+1

=
1
d
1
a1
-
1
a2
+
1
a2
-
1
a3
+…+
1
an
-
1
an+1

=
1
d
1
a1
-
1
an+1

=
1
d
an+1-an
a1an+1

=
1
d
nd
a1an+1

=
n
a1an+1

=
kn+b
a1an+1

∴k=1,b=0.
(2)∵a12+an+12≤m,
∴由均值不等式得2a1an+1≤a12+an+12≤m
∴(a1+an+11)2≤2m
|a1+an+1|≤
2
m

Sn=
n
2
(a1+an+1)≤
n
2
|a1+an+1|≤
2m

∴Sn
2
2m
n
,当n=1时,
2
2m
n
有最大值2
2m

Sn≤2
2m
,Sn的最大值为2
2m
点评:本题考查常数值的求法,考查数列前n项和的最大值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网