题目内容
已知cos(α+β)=
,cosβ=
,α,β均为锐角,求sinα的值.
| 5 |
| 13 |
| 4 |
| 5 |
由cos(α+β)=
,cosβ=
,
根据α,β∈(0,
),得到α+β∈(0,π),
所以sin(α+β)=
=
,sinβ=
=
,
则sinα=sin[(α+β)-β]
=sin(α+β)cosβ-cos(α+β)sinβ
=
×
-
×
=
.
| 5 |
| 13 |
| 4 |
| 5 |
根据α,β∈(0,
| π |
| 2 |
所以sin(α+β)=
1-(
|
| 12 |
| 13 |
1-(
|
| 3 |
| 5 |
则sinα=sin[(α+β)-β]
=sin(α+β)cosβ-cos(α+β)sinβ
=
| 12 |
| 13 |
| 4 |
| 5 |
| 5 |
| 13 |
| 3 |
| 5 |
| 33 |
| 65 |
练习册系列答案
相关题目