题目内容
已知x与y之间的几组数据如下表
则y与x的线性回归方程
=bx+a必过( )
| x | 0 | 1 | 2 | 3 |
| y | -1 | -3 | -4 | -7 |
| y |
| A、点(2,2) |
| B、点(1.5,4) |
| C、点(1.5,-3.75) |
| D、点(1.5,0) |
考点:线性回归方程
专题:计算题,概率与统计
分析:根据线性回归方程必过样本中心点,即可得到结论.
解答:
解:∵
=
(0+1+2+3)=1.5,
=
(-1-3-4-7)=-3.75,
∴根据线性回归方程必过样本中心点,可得y与x的线性回归方程
=bx+a必过(1.5,-3.75).
故选:C.
. |
| x |
| 1 |
| 4 |
. |
| y |
| 1 |
| 4 |
∴根据线性回归方程必过样本中心点,可得y与x的线性回归方程
| y |
故选:C.
点评:本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.
练习册系列答案
相关题目
数列{an}满足a1=1且对任意的m,n∈N*都有am+n=am+an+mn,则
+
+
+…+
=( )
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2013 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知双曲线C:
-
=1(a>0,b>0)的离心率为
,则C的渐近线方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| 5 |
| A、y=±2x | ||
B、y=±
| ||
C、y=±
| ||
D、y=±
|
某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为y=f(t)=
,则在时刻t=40min的降雨强度为( )
| 10t |
| A、20mm/min | ||
| B、400mm/min | ||
C、
| ||
D、
|
已知i是虚数单位,(1+2i)z=i,则
=( )
. |
| z |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
不等式x2•(x-1)<0的解集是( )
| A、{x|x>1} |
| B、{x|x<1} |
| C、{x|0<x<1} |
| D、{x|x<1,且x≠0} |
以原点为中心,焦点在y轴上的双曲线C的一个焦点为F(0,2
),一个顶点为A(0,-2),则双曲线C的方程为( )
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
化简
-
+
=( )
| AC |
| DC |
| DA |
A、
| ||
B、
| ||
C、
| ||
D、
|