题目内容

若f(x)=x2-4ax+a2-1在(-∞,2)上是减函数,则a的取值范围是(  )
A、a≥1B、a<1
C、a>1D、a≤1
考点:二次函数的性质
专题:函数的性质及应用
分析:先找二次函数的对称轴,明确其开口方向,再按条件看对称轴与区间的相对位置.
解答: 解:f(x)=x2-4ax+a2-1
其开口方向向上,对称轴为:x=2a
∵函数f(x)=x2-4ax+a2-1在区间(-∞,2)上是减函数
∴2a≥2
∴a≥1.
故选A.
点评:本题主要考查二次函数的单调性,先找到其对称轴,明确其开口方向,再研究单调性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网