题目内容
9.记关于x的不等式$\frac{x-a}{x+1}$<0的解集为P,不等式|x-1|≤1的解集为Q.(1)若a=3,求P;
(2)若a>0,且Q⊆P,求a的取值范围.
分析 (1)把a=3代入不等式解集合P;(2)根据Q⊆P,求正数a的取值范围.
解答 解:(1)当a=3时,由$\frac{x-a}{x+1}$<0,得P=(-1,3)…4分
(2)由|x-1|≤1,得:Q={x|0≤x≤2}…6分
由a>0,得P=(-1,a),…8分
又Q⊆P,所以a>2,
即a的取值范围是(2,+∞)…10分
点评 本题主要考查不等式的解法和集合间的关系.
练习册系列答案
相关题目
20.复数(1+i)(1-i)=( )
| A. | 2 | B. | 1 | C. | -1 | D. | -2 |
17.近年来空气污染是一个生活中重要的话题,PM2.5就是其中一个重要指标.各省、市、县均要进行实时监测,某市2015年11月的PM2.5浓度统计如图所示.
(1)请完成频率分布表;
(2)专家建议,空气质量为优、良、轻度污染时可正常进行户外活动,中度污染及以上时,取消一切户外活动,在2015年11月份,该市某学校进行了连续两天的户外拔河比赛,求拔河比赛能正常进行的概率.
| 日期 | PM2.5浓度 | 日期 | PM2.5浓度 | 日期 | PM2.5浓度 |
| 11-1 | 137 | 11-11 | 144 | 11-21 | 40 |
| 11-2 | 143 | 11-12 | 166 | 11-22 | 42 |
| 11-3 | 145 | 11-13 | 197 | 11-23 | 35 |
| 11-4 | 193 | 11-14 | 194 | 11-24 | 53 |
| 11-5 | 133 | 11-15 | 219 | 11-25 | 88 |
| 11-6 | 22 | 11-16 | 41 | 11-26 | 29 |
| 11-7 | 22 | 11-17 | 90 | 11-27 | 199 |
| 11-8 | 57 | 11-18 | 46 | 11-28 | 287 |
| 11-9 | 111 | 11-19 | 80 | 11-29 | 291 |
| 11-10 | 134 | 11-20 | 67 | 11-30 | 452 |
| 空气质量指数类别 | PM2.5 24小时浓度均值 | 频数 | 频率 |
| 优 | 0-35 | 4 | $\frac{2}{15}$ |
| 良 | 36-75 | 7 | $\frac{7}{30}$ |
| 轻度污染 | 76-115 | 4 | |
| 中度污染 | 116-150 | 6 | |
| 重度污染 | 151-250 | ||
| 严重污染 | 251-500 | ||
| 合计 | / | 30 | 1 |
1.已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为 $\stackrel{∧}{y}$=0.01x+0.5,则加工600个零件大约需要的时间为 ( )
| A. | 6.5h | B. | 5.5h | C. | 3.5h | D. | 0.5h |