题目内容

1.关于x、y的方程组$\left\{\begin{array}{l}{2x+my=5}\\{nx-4y=2}\end{array}\right.$的增广矩阵经过变换后得到$(\begin{array}{l}{1}&{0}&{3}\\{0}&{1}&{1}\end{array})$,则$(\begin{array}{l}{m}\\{n}\end{array})$=$(\begin{array}{l}{-1}\\{2}\end{array})$.

分析 由题意可知矩阵为$(\begin{array}{l}{1}&{0}&{3}\\{0}&{1}&{1}\end{array})$,对应的方程组为:$\left\{\begin{array}{l}{1•x+0•y=3}\\{0•x+1•y=1}\end{array}\right.$,则$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,代入方程组,即可求得m和n的值,即可求得矩阵$(\begin{array}{l}{m}\\{n}\end{array})$的值.

解答 解:矩阵为$(\begin{array}{l}{1}&{0}&{3}\\{0}&{1}&{1}\end{array})$,对应的方程组为:$\left\{\begin{array}{l}{1•x+0•y=3}\\{0•x+1•y=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,
由题意得:关于x、y的二元线性方程组$\left\{\begin{array}{l}{2x+my=5}\\{nx-4y=2}\end{array}\right.$的解为:$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,
∴$\left\{\begin{array}{l}{2×3+m=5}\\{3n-4×1=2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{m=-1}\\{n=2}\end{array}\right.$,
$(\begin{array}{l}{m}\\{n}\end{array})$=$(\begin{array}{l}{-1}\\{2}\end{array})$,
故答案为:$(\begin{array}{l}{-1}\\{2}\end{array})$.

点评 本题的考点是二元一次方程组的矩阵形式,主要考查了几种特殊的矩阵变换,解答的关键是对增广矩阵的理解,利用方程组同解解决问题,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网