题目内容

19.在实数集R中定义一种运算“⊙”,具有性质:①对任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③对任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)-2c,则函数f(x)=x⊙$\frac{1}{x}({x>0})$的最小值是(  )
A.2B.3C.$3\sqrt{2}$D.$2\sqrt{2}$

分析 根据题中给出的对应法则,可得f(x)=(x⊙$\frac{1}{x}$)⊙0=1+x+$\frac{1}{x}$,利用基本不等式求最值可得x+≥$\frac{1}{x}$2,当且仅当x=1时等号成立,由此可得函数f(x)的最小值为f(1)=3.

解答 解:根据题意,得
f(x)=x⊙$\frac{1}{x}$=(x⊙$\frac{1}{x}$)⊙0=0⊙(x•$\frac{1}{x}$)+(x⊙0)+($\frac{1}{x}$⊙0)-2×0=1+x+$\frac{1}{x}$
即f(x)=1+x+$\frac{1}{x}$,
∵x>0,可得x+$\frac{1}{x}$≥2,当且仅当x=1时等号成立,由此可得函数f(x)的最小值为f(1)=3.
故选:B

点评 本题给出新定义,求函数f(x)的最小值.着重考查了利用基本不等式求最值、函数的解析式求法和简单的合情推理等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网