题目内容

如图,P为△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F.求证:
(1)BC⊥平面PAB;
(2)平面AEF⊥平面PBC;
(3)PC⊥EF.
考点:平面与平面垂直的判定,直线与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:(1)由PA⊥平面ABC,得BC⊥PA,由∠ABC=90°,得BC⊥AB,从而可证BC⊥平面PAB;
(2)由BC⊥平面PAB,AE?平面PAB,可得BC⊥AE,由AE⊥PB于E,PB∩BC=B,得AE⊥平面PBC,从而可证平面AEF⊥平面PBC;
(3)由AE⊥平面PBC,得AE⊥PC,由AF⊥PC,AF∩AE=A,得PC⊥平面AEF,从而可证PC⊥EF.
解答: 证明:(1)∵PA⊥平面ABC,∴BC⊥PA
∵∠ABC=90°,∴BC⊥AB
∵PA∩AB=A
∴BC⊥平面PAB
(2)∵BC⊥平面PAB,AE?平面PAB
∴BC⊥AE
∵AE⊥PB于E,PB∩BC=B
∴AE⊥平面PBC
∴平面AEF⊥平面PBC
(3)∵AE⊥平面PBC
∴AE⊥PC
∵AF⊥PC,AF∩AE=A
∴PC⊥平面AEF
∵EF?平面AEF
∴PC⊥EF.
点评:本题主要考查了平面与平面垂直的判定,直线与平面垂直的判定,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网