题目内容
(1)BC⊥平面PAB;
(2)平面AEF⊥平面PBC;
(3)PC⊥EF.
考点:平面与平面垂直的判定,直线与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:(1)由PA⊥平面ABC,得BC⊥PA,由∠ABC=90°,得BC⊥AB,从而可证BC⊥平面PAB;
(2)由BC⊥平面PAB,AE?平面PAB,可得BC⊥AE,由AE⊥PB于E,PB∩BC=B,得AE⊥平面PBC,从而可证平面AEF⊥平面PBC;
(3)由AE⊥平面PBC,得AE⊥PC,由AF⊥PC,AF∩AE=A,得PC⊥平面AEF,从而可证PC⊥EF.
(2)由BC⊥平面PAB,AE?平面PAB,可得BC⊥AE,由AE⊥PB于E,PB∩BC=B,得AE⊥平面PBC,从而可证平面AEF⊥平面PBC;
(3)由AE⊥平面PBC,得AE⊥PC,由AF⊥PC,AF∩AE=A,得PC⊥平面AEF,从而可证PC⊥EF.
解答:
证明:(1)∵PA⊥平面ABC,∴BC⊥PA
∵∠ABC=90°,∴BC⊥AB
∵PA∩AB=A
∴BC⊥平面PAB
(2)∵BC⊥平面PAB,AE?平面PAB
∴BC⊥AE
∵AE⊥PB于E,PB∩BC=B
∴AE⊥平面PBC
∴平面AEF⊥平面PBC
(3)∵AE⊥平面PBC
∴AE⊥PC
∵AF⊥PC,AF∩AE=A
∴PC⊥平面AEF
∵EF?平面AEF
∴PC⊥EF.
∵∠ABC=90°,∴BC⊥AB
∵PA∩AB=A
∴BC⊥平面PAB
(2)∵BC⊥平面PAB,AE?平面PAB
∴BC⊥AE
∵AE⊥PB于E,PB∩BC=B
∴AE⊥平面PBC
∴平面AEF⊥平面PBC
(3)∵AE⊥平面PBC
∴AE⊥PC
∵AF⊥PC,AF∩AE=A
∴PC⊥平面AEF
∵EF?平面AEF
∴PC⊥EF.
点评:本题主要考查了平面与平面垂直的判定,直线与平面垂直的判定,属于基本知识的考查.
练习册系列答案
相关题目
圆柱的轴截面ABCD是边长为2的正方形,M为正方形ABCD的对角线的交点,动点P在圆柱下底面内(包括圆周),若直线AM与直线MP所成的角为45°,则点P形成的轨迹为( )
| A、椭圆的一部分 |
| B、抛物线的一部分 |
| C、双曲线的一部分 |
| D、圆的一部分 |
函数f(x)=
有且只有一个零点的充分不必要条件是( )
|
| A、a<0 | ||
B、0<a<
| ||
C、
| ||
| D、a≤0或a>1 |
若双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,点P是第一象限内双曲线上的点.记∠PAB=α,且∠PBA=β,则( )
A、α+β=
| ||
B、β-α=
| ||
| C、β=2α | ||
| D、β=3α |