题目内容

14.已知抛物线C:y2=2px(p>0)的焦点F与椭圆C':$\frac{x^2}{6}+\frac{y^2}{5}$=1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.
(1)求抛物线C的方程以及|AF|的值;
(2)记抛物线C的准线与x轴交于点B,若$\overrightarrow{MF}=λ\overrightarrow{FN}$,|BM|2+|BN|2=40,求实数λ的值.

分析 (1)依题意F(1,0),故$\frac{p}{2}=1$,则2p=4,可得抛物线C的方程.将A(x0,2)代入抛物线方程,解得x0,即可得|AF|的值
(2)依题意,F(1,0),设l:x=my+1,设M(x1,y1)、N(x2,y2),联立方程$\left\{{\begin{array}{l}{{y^2}=4x}\\{x=my+1}\end{array}}\right.$,消去x,得y2-4my-4=0,则${|{\overrightarrow{BM}}|^2}+{|{\overrightarrow{BN}}|^2}={\overrightarrow{BM}^2}+{\overrightarrow{BN}^2}={({x_1}+1)^2}+{y_1}^2+{({x_2}+1)^2}+{y_2}^2={x_1}^2+{x_2}^2+2({x_1}+{x_2})+2+{y_1}^2+{y_2}^2$=(m2+1)(16m2+8)+4m•4m+8=16m4+40m2+16=40,解得λ.

解答 解:(1)依题意,椭圆$C':\frac{x^2}{6}+\frac{y^2}{5}=1$中,a2=6,b2=5,故c2=a2-b2=1,故$\frac{p}{2}=1$,则2p=4,
可得抛物线C的方程为y2=4x.
将A(x0,2)代入y2=4x,解得x0=1,故$|{AF}|=1+\frac{p}{2}=2$.
(2)依题意,F(1,0),设l:x=my+1,设M(x1,y1)、N(x2,y2),
联立方程$\left\{{\begin{array}{l}{{y^2}=4x}\\{x=my+1}\end{array}}\right.$,消去x,得y2-4my-4=0.
所以$\left\{{\begin{array}{l}{{y_1}+{y_2}=4m}\\{{y_1}{y_2}=-4}\end{array}}\right.$,①且$\left\{{\begin{array}{l}{{x_1}=m{y_1}+1}\\{{x_2}=m{y_2}+1}\end{array}}\right.$,
又$\overrightarrow{MF}=λ\overrightarrow{FN}$,则(1-x1,-y1)=λ(x2-1,y2),即y1=-λy2
代入①得$\left\{{\begin{array}{l}{-λ{y_2}^2=-4}\\{(1-λ){y_2}=4m}\end{array}}\right.$,消去y2得$4{m^2}=λ+\frac{1}{λ}-2$,
易得B(-1,0),则$\overrightarrow{BM}=({x_1}+1,{y_1}),\overrightarrow{BN}=({x_2}+1,{y_2})$,
则${|{\overrightarrow{BM}}|^2}+{|{\overrightarrow{BN}}|^2}={\overrightarrow{BM}^2}+{\overrightarrow{BN}^2}={({x_1}+1)^2}+{y_1}^2+{({x_2}+1)^2}+{y_2}^2={x_1}^2+{x_2}^2+2({x_1}+{x_2})+2+{y_1}^2+{y_2}^2$
=${(m{y_1}+1)^2}+{(m{y_2}+1)^2}+2(m{y_1}+m{y_2}+2)+2+{y_1}^2+{y_2}^2$=$({m^2}+1)({y_1}^2+{y_2}^2)+4m({y_1}+{y_2})+8$
=(m2+1)(16m2+8)+4m•4m+8=16m4+40m2+16,
当16m4+40m2+16=40,解得${m^2}=\frac{1}{2}$,故$λ=2±\sqrt{3}$.

点评 本题考查了抛物线的方程与性质,直线与抛物线的位置关系,考查了向量与曲线,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网