题目内容
已知{an}是等比数列,且a1=3,a4=81
(1)求通项公式an;
(2)设bn=log3a1+log2a2+…+log3an,求
+
+
+…+
.
(1)求通项公式an;
(2)设bn=log3a1+log2a2+…+log3an,求
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)设出等比数列的公比,由已知求得公比,代入等比数列的通项公式得答案;
(2)把(1)中求出的an代入bn=log3a1+log2a2+…+log3an,进一步得到
,然后由列项相消法求得答案.
(2)把(1)中求出的an代入bn=log3a1+log2a2+…+log3an,进一步得到
| 1 |
| bn |
解答:
解:(1)设等比数列{an}的公比为q,
由a1=3,a4=81,得
q3=
=
=27,
∴q=3.
则an=3×3n-1=3n;
(2)bn=log3a1+log2a2+…+log3an
=log33+log332+…+log33n
=1+2+…+n=
.
∴
=
=2(
-
).
则
+
+
+…+
=2(1-
+
-
+
-
+…+
-
)
=2(1-
)=
.
由a1=3,a4=81,得
q3=
| a4 |
| a1 |
| 81 |
| 3 |
∴q=3.
则an=3×3n-1=3n;
(2)bn=log3a1+log2a2+…+log3an
=log33+log332+…+log33n
=1+2+…+n=
| n(n+1) |
| 2 |
∴
| 1 |
| bn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
则
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
| 2n |
| n+1 |
点评:本题考查了等比数列的通项公式,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目
已知
=(3,1),
=(x,-1),且
∥
,则x等于( )
| a |
| b |
| a |
| b |
A、
| ||
B、-
| ||
| C、3 | ||
| D、-3 |