题目内容

15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线过点(-1,2),则C的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 由题意,$\frac{b}{a}$=2,可得b=2a,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,即可求出双曲线的离心率.

解答 解:由题意,$\frac{b}{a}$=2,
∴b=2a,
∴c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故选:A.

点评 本题考查双曲线的离心率,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网