题目内容
8.已知函数f(x)=$\frac{1}{2}$x2-(a-1)x+alnx.(1)讨论函数f(x)的单调性;
(2)证明:若1<a<5,则对任意x1,x2∈(0,+∞),x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{ln{x}_{1}-ln{x}_{2}}$>1.
分析 (1)求出函数的导数,讨论方程的判别式的符号,运用二次不等式的解法,可得函数的单调性;
(2)要证对任意x1,x2∈(0,+∞),x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{ln{x}_{1}-ln{x}_{2}}$>1.即证$\frac{f({x}_{1})-ln{x}_{1}-[f({x}_{2})-ln{x}_{2}]}{ln{x}_{1}-ln{x}_{2}}$>0?$\frac{f({x}_{1})-ln{x}_{1}-[f({x}_{2})-ln{x}_{2}]}{{x}_{1}-{x}_{2}}$>0,即证y=f(x)-lnx在(0,+∞)递增.由f(x)-lnx=$\frac{1}{2}$x2-(a-1)x+(a-1)lnx,求出导数,求得单调性,即可得证.
解答 解:(1)函数f(x)=$\frac{1}{2}$x2-(a-1)x+alnx的导数为
f′(x)=x-(a-1)+$\frac{a}{x}$=$\frac{{x}^{2}-(a-1)x+a}{x}$,
①当△=(a-1)2-4a=a2-6a+1≤0,即3-2$\sqrt{2}$≤a≤3+2$\sqrt{2}$时,
f′(x)>0恒成立,f(x)递增;
当△>0即a<3-2$\sqrt{2}$或a>3+2$\sqrt{2}$时,
②当a>3+2$\sqrt{2}$时,方程x2-(a-1)x+a=0的两根为x1,x2,(0<x1<x2),
当x>x2,或x<x1时,f′(x)>0,f(x)递增,当x1<x<x2时,f′(x)<0,f(x)递减.
③当0≤a<3-2$\sqrt{2}$时,f′(x)>0恒成立,f(x)递增;
④当a<0时,方程x2-(a-1)x+a=0的两根中一正一负,设正根为x3,
即有当x>x3,f′(x)>0,f(x)递增;当x<x3,f′(x)<0,f(x)递减.
(2)证明:要证对任意x1,x2∈(0,+∞),x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{ln{x}_{1}-ln{x}_{2}}$>1.
即证$\frac{f({x}_{1})-ln{x}_{1}-[f({x}_{2})-ln{x}_{2}]}{ln{x}_{1}-ln{x}_{2}}$>0?$\frac{f({x}_{1})-ln{x}_{1}-[f({x}_{2})-ln{x}_{2}]}{{x}_{1}-{x}_{2}}$>0,
即证y=f(x)-lnx在(0,+∞)递增.
由f(x)-lnx=$\frac{1}{2}$x2-(a-1)x+(a-1)lnx,
导数为x-(a-1)+$\frac{a-1}{x}$=$\frac{{x}^{2}-(a-1)x+a-1}{x}$,
由x2-(a-1)x+a-1的判别式△=(a-1)2-4(a-1)=(a-1)(a-5),
由1<a<5,可得△<0,即有x2-(a-1)x+a-1>0恒成立,
即有x>0时,函数y=f(x)-lnx在(0,+∞)递增.
则有不等式$\frac{f({x}_{1})-f({x}_{2})}{ln{x}_{1}-ln{x}_{2}}$>1成立.
点评 本题考查导数的运用:求单调性,考查函数的单调性的运用,运用构造函数和分类讨论的思想方法是解题的关键.
| A. | {x|x≥1} | B. | {x|x≤$\sqrt{5}$} | C. | {x|x=$\sqrt{n}$,n∈N} | D. | {x|x=$\sqrt{n}$,n∈N+} |