题目内容

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),且经过定点P(1,
3
2
),M(x0,y0)为椭圆C上的动点,以点M为圆心,MF2为半径作圆M.
(1)求椭圆C的方程;
(2)若圆M与y轴有两个不同交点,求点M横坐标x0的取值范围;
(3)是否存在定圆N,使得圆N与圆M恒相切?若存在,求出定圆N的方程;若不存在,请说明理由.
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)由题设知及椭圆定义得|PF1|+|PF2|=2a,求出a=2.又c=1.由此能求出椭圆方程.
(2)先设M(x0,y0),得到圆M的半径r=
(x0-1)2+y02
,再利用圆心M到y轴距离d=|x0|,结合圆M与y轴有两个交点时,则有r>d,即可构造关于x0不等式,从而解得点M横坐标的取值范围.
(3)存在定圆N:(x+1)2+y2=16与圆M恒相切,利用椭圆的定义,即可得出结论.
解答: 解:(1)由椭圆定义得|PF1|+|PF2|=2a,
即2a=4,
∴a=2.
又c=1,
∴b2=a2-c2=3.
故椭圆方程为
x2
4
+
y2
3
=1


(2)设M(x0,y0),则圆M的半径r=
(x0-1)2+y02

圆心M到y轴距离d=|x0|,
若圆M与y轴有两个交点则有r>d即
(x0-1)2+y02
>|x0|,
化简得y02-2x0+1>0
∵M为椭圆上的点
∴得3x02+8x0-16<0
解得-4<x0
4
3

∵-2≤x0≤2,
∴-2≤x0
4
3

(3)存在定圆N:(x+1)2+y2=16与圆M恒相切,
其中定圆N的圆心为椭圆的左焦点F1,半径为椭圆C的长轴长4.
∵由椭圆定义知,|MF1|+|MF2|=4,即|MF1|=4-|MF2|,
∴圆N与圆M恒内切.
点评:本题考查椭圆方程和直线与圆锥曲线的关系,综合性强,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网