题目内容

已知函数f(x)=x+
1
x

(1)判断函数的奇偶性,并加以证明;
(2)用定义证明f(x)在[1,+∞)上是增函数.
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)根据函数奇偶性的定义即可判断函数的奇偶性;
(2)根据函数单调性的定义即可证明f(x)在[1,+∞)上是增函数.
解答: 解:(1)函数f(x)=x+
1
x
为奇函数
证明:对于函数f(x)=x+
1
x
,其定义域为{x|x≠0}
因为对于定义域内的每一个x,
都有f(-x)=-x+
1
-x
=-(x+
1
x
)=-f(x)

所以,函数f(x)=x+
1
x
为奇函数
(2)设任意x1,x2∈[1,+∞),且x1<x2
f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2
)
=(x1-x2)+
x2-x1
x1x2
=(x1-x2)(1-
1
x1x2
)
=
(x1-x2)(x1x2-1)
x1x2

已知x1,x2∈[1,+∞),则x1x2-1>0,x1-x2<0
即f(x1)-f(x2)<0,f(x1)<f(x2
f(x)=x+
1
x
在[1,+∞)上是增函数
点评:本题主要考查函数奇偶性和单调性的判断和证明,利用定义法是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网