题目内容

7.已知|$\overrightarrow{m}$|=2,|$\overrightarrow{n}$|=3,且$\overrightarrow{m}$•$\overrightarrow{n}$=-2$\sqrt{3}$,则向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角θ的余弦值为-$\frac{\sqrt{3}}{3}$.

分析 代入向量的夹角公式cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$计算.

解答 解:cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-2\sqrt{3}}{2•3}$=-$\frac{\sqrt{3}}{3}$.
故答案为:-$\frac{\sqrt{3}}{3}$.

点评 本题考查了平面向量的夹角公式,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网