题目内容
10.某程序框图如图所示,分别输入下列选项中的四个函数,则可以输出的函数是( )| A. | f(x)=x2+1 | B. | f(x)=sinx | C. | f(x)=2x | D. | f(x)=log2|x| |
分析 根据题意,得该程序框图输出的函数应满足:①是偶函数,②存在零点;由此判定各选项中的函数是否满足条件即可.
解答 解:模拟程序框图的运行过程,得:
该程序框图输出的函数应满足条件:①f(x)-f(-x)=0,是偶函数,②存在零点;
对于A,f(x)=x2+1不存在零点,不能输出;
对于B,f(x)=sinx不是偶函数,不能输出;
对于C,f(x)=2x,不是偶函数,不能输出;
对于D,f(x)=log2|x|,是偶函数,且存在零点0,∴满足条件①②,可以输出;
故选:D.
点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,得出解题的关键是输出的函数应满足的条件,是基础题.
练习册系列答案
相关题目
1.已知集合U={-1,0,1},B={x|x=m2,m∈U},则∁UB=( )
| A. | {0,1} | B. | {-1,0,1} | C. | ∅ | D. | {-1} |
18.国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参加抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计,y表示开业第x天参加抽奖活动的人数,得到统计表格如下:
经过进一步统计分析,发现y与x具有线性相关关系.
(Ⅰ)若从这7天随机抽取两天,求至少有1天参加抽奖人数超过10的概率;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估计若该活动持续10天,共有多少名顾客参加抽奖.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.
| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| y | 5 | 8 | 8 | 10 | 14 | 15 | 17 |
(Ⅰ)若从这7天随机抽取两天,求至少有1天参加抽奖人数超过10的概率;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估计若该活动持续10天,共有多少名顾客参加抽奖.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.
5.在公差大于0的等差数列{an}中,2a7-a13=1,且a1,a3-1,a4+9成等比数列,则数列{(-1)n-1an}的前21项和为( )
| A. | 21 | B. | -21 | C. | 441 | D. | -441 |
6.成等差数列的三个正数的和等于12,并且这三个数分别加上1,4,11后成为等比数列{bn}中的b2,b3,b4,则数列{bn}的通项公式为( )
| A. | bn=2n | B. | bn=3n | C. | bn=2n-1 | D. | bn=3n-1 |