题目内容

8.△ABC的内角A、B、C所对的边a、b、c,且asinB-$\sqrt{3}$bcosA=0
(Ⅰ)求角A
(Ⅱ)若a=6,b+c=8,求△ABC的面积.

分析 (I)由asinB-$\sqrt{3}$bcosA=0,利用正弦定理可得sinAsinB-$\sqrt{3}$sinBcosA=0,化为tanA=$\sqrt{3}$,进而得出.
(II)由余弦定理可得:a2=b2+c2-2bccosA,变形62=(b+c)2-2bc-2bccos$\frac{π}{3}$,解得bc即可得出.

解答 解:(I)∵asinB-$\sqrt{3}$bcosA=0,
∴sinAsinB-$\sqrt{3}$sinBcosA=0,
∵B∈(0,π),∴sinB≠0,∴tanA=$\sqrt{3}$,
又A∈(0,π),∴A=$\frac{π}{3}$.
(II)由余弦定理可得:a2=b2+c2-2bccosA,
∴62=(b+c)2-2bc-2bccos$\frac{π}{3}$,
∴82-3bc=62,化为bc=$\frac{28}{3}$,
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{1}{2}×\frac{28}{3}×sin\frac{π}{3}$=$\frac{7\sqrt{3}}{3}$.

点评 本题考查了正弦定理余弦定理、三角函数求值、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网