题目内容
已知过点
的动直线
与圆
:
相交于
、
两点,
与
直线
:
相交于
.
(1)求证:当
与
垂直时,
必过圆心
;
(2)当
时,求直线
的方程.

直线
(1)求证:当
(2)当
(2)直线
的方程为
或
(1)∵
与
垂直,且
,∴
,
故直线
方程为
,即
………3分
∵圆心坐标(0,3)满足直线
方程,
∴当
与
垂直时,
必过圆心
…………………5分
(2)①当直线
与
轴垂直时, 易知
符合题意………8分
②当直线
与
轴不垂直时, 设直线
的方程为
,即
,……9分
∵
,∴
,……………10分
则由
,得
, ∴直线
:
.………13分
故直线
的方程为
或
…………………14分

故直线
∵圆心坐标(0,3)满足直线
∴当
(2)①当直线
②当直线
∵
则由
故直线
练习册系列答案
相关题目