题目内容
某工厂对新研发的一种产品进行试销,得到如下数据表:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(百件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根据上表求出回归直线方程
,并预测当单价定为8.3元时的销量;
(2)如果该工厂每件产品的成本为5.5元,利用所求的回归关系,要使得利润最大,单价应该定为多少?
附:线性回归方程
中斜率和截距最小二乘估计计算公式:
,![]()
通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | ||||
爱好 | 40 | 20 | |||
不爱好 | 20 | 30 | |||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||
k | 3.841 | 6.635 | 10.828 | ||
算得,K2≈7.81.参照附表,得到的正确结论是( )
A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别无关”
D.有99%以上的把握认为“爱好该项运动与性别有关”.
4月23日是世界读书日,惠州市某中学在此期间开展了一系列的读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
![]()
![]()
(Ⅰ)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
(Ⅱ)将频率视为概率,现在从该校大量学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“读书迷”的人数为
,若每次抽取的结果是相互独立的,求
的分布列、数学期望
和方差
.
附:![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |