题目内容

20.已知f(x)=cosxsinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(1)求f(x)的单调增区间;
(2)在△ABC中,A为锐角且f(A)=$\frac{\sqrt{3}}{2}$,D为BC中点,AD=3,AB=$\sqrt{3}$,求AC的长.

分析 (1)将函数化简为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)根据f(A)=$\frac{\sqrt{3}}{2}$,求解出A的值,D为BC中点,AD=3,AB=$\sqrt{3}$,利用余弦定理求AC的长.

解答 解:(1)由题可知f(x)=cosxsinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$,
化简可得:f(x)=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$cos2x$+\frac{\sqrt{3}}{2}$=sin(2x-$\frac{π}{3}$).
令$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$,(k∈Z),
解得:$kπ-\frac{π}{12}$≤x≤$kπ+\frac{5π}{12}$,
∴函数f(x)的单调递增区间为[$kπ-\frac{π}{12}$,$kπ+\frac{5π}{12}$],(k∈Z),
(2)在△ABC中,A为锐角,
f(A)=$\frac{\sqrt{3}}{2}$,即sin(2A-$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
解得:A=$\frac{π}{3}$
又因为D为BC中点,以AB、AC为邻边作平行四边形ABEC,
因为AD=3,所以:AE=6,在△ABE中,AB=$\sqrt{3}$,∠ABE=120°
由余弦定理可知:,cos∠ABE=cos120°=$\frac{3+B{E}^{2}-36}{2\sqrt{3}•BE}$,
解得:AC=BE=$\frac{3\sqrt{15}-\sqrt{3}}{2}$.

点评 本题考查三角函数的化简以及恒等变换公式的应用,还有解三角形的内容,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网