题目内容
求证1×2+2×3+3×4+…+n(n+1)=
n(n+1)(n+2).
| 1 |
| 3 |
证明:①当n=1时,左边=2,右边=
×1×2×3=2,等式成立;
②假设当n=k时,等式成立,
即1×2+2×3+3×4+…+k(k+1)=
k(k+1)(k+2)
则当n=k+1时,
左边=
k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(
k+1)=
(k+1)(k+2)(k+3)
即n=k+1时,等式也成立.
所以1×2+2×3+3×4+…+n(n+1)=
n(n+1)(n+2)对任意正整数都成立.
| 1 |
| 3 |
②假设当n=k时,等式成立,
即1×2+2×3+3×4+…+k(k+1)=
| 1 |
| 3 |
则当n=k+1时,
左边=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
即n=k+1时,等式也成立.
所以1×2+2×3+3×4+…+n(n+1)=
| 1 |
| 3 |
练习册系列答案
相关题目