题目内容
设数列{bn}的前n项和为Sn,对任意的n∈N*,都有bn>0,且Sn2=b13+b23+…bn3;数列{an}满足a1=1,an+1=(1+cos2
)an+sin2
,n∈N*.
(Ⅰ)求b1,b2的值及数列{bn}的通项公式;
(Ⅱ)求证:
+
+
…+
<n+
对一切n∈N+成立.
| bnπ |
| 2 |
| bnπ |
| 2 |
(Ⅰ)求b1,b2的值及数列{bn}的通项公式;
(Ⅱ)求证:
| a2 |
| a1 |
| a4 |
| a3 |
| a6 |
| a5 |
| a2n |
| a2n-1 |
| 19 |
| 12 |
分析:(Ⅰ)根据对任意的n∈N*,都有bn>0,且Sn2=b13+b23+…bn3,可求b1,b2的值;利用条件,再写一式,两式相减,可得数列{bn}是等差数列,从而可求其通项公式;
(Ⅱ)确定数列的通项,利用放缩法求和,即可证得结论.
(Ⅱ)确定数列的通项,利用放缩法求和,即可证得结论.
解答:(Ⅰ)解:∵对任意的n∈N*,都有bn>0,且Sn2=b13+b23+…bn3,∴b1=1,b2=2;
=
+
+…
,
=
+
+…
,
相减得:
=(b1+b2+…+bn)2-(b1+b2+…+bn-1)2
=(2b1+2b2+…+2bn-1+bn)bn,
即
=2b1+2b2+…+2bn-1+bn(n≥2)
同理
=2b1+2b2+…+2bn+bn+1,
两式再减
-
=bn+bn+1⇒bn+1-bn=1,
∴bn=n…(5分)
(Ⅱ)证明:∵a1=1,an+1=(1+cos2
)an+sin2
,n∈N*,
∴a2=(1+0)a1+1=2,a3=(1+1)a2+0=4,a4=(1+0)a3+1=5
一般地,a2m+1=2a2m,a2m=a2m-1+1,则a2m+1=2a2m-1+2
∴有a2m+1+2=2(a2m-1+2),∴
=2,
∴数列{a2m-1+2}是公比为2的等比数列,
∴a2m-1+2=(a1+2)2m-1得:a2m-1=-2+3•2m-1(m∈N*),a2m=
a2m+1=-1+3•2m-1(m∈N*)∴an=
令cn=
=
=1+
=1+
而当n≥2时,-1+3•2n-2≥2,故0<
<1,
则0<
<
=
,从而
<
cn<1+
=1+
(n≥2,n∈N*),
∵Tn=
+
+
…+
∴Tn<2+(1+
)+(1+
)+…+(1+
)=n+1+
+
•
(1-
)
=n+1+
+
(1-
)=n+
-
<n+
…(12分)
| S | 2 n |
| b | 3 1 |
| b | 3 2 |
| b | 3 n |
| S | 2 n-1 |
| b | 3 1 |
| b | 3 2 |
| b | 3 n-1 |
相减得:
| b | 3 n |
| b | 3 n |
即
| b | 2 n |
同理
| b | 2 n+1 |
两式再减
| b | 2 n+1 |
| b | 2 n |
∴bn=n…(5分)
(Ⅱ)证明:∵a1=1,an+1=(1+cos2
| nπ |
| 2 |
| nπ |
| 2 |
∴a2=(1+0)a1+1=2,a3=(1+1)a2+0=4,a4=(1+0)a3+1=5
一般地,a2m+1=2a2m,a2m=a2m-1+1,则a2m+1=2a2m-1+2
∴有a2m+1+2=2(a2m-1+2),∴
| a2m+1+2 |
| a2m-1+2 |
∴数列{a2m-1+2}是公比为2的等比数列,
∴a2m-1+2=(a1+2)2m-1得:a2m-1=-2+3•2m-1(m∈N*),a2m=
| 1 |
| 2 |
|
令cn=
| -1+3•2n-1 |
| -2+3•2n-1 |
| -2+3•2n-1+1 |
| -2+3•2n-1 |
| 1 |
| -2+3•2n-1 |
| 1 |
| 2(-1+3•2n-2) |
而当n≥2时,-1+3•2n-2≥2,故0<
| 1 |
| -1+3•2n-2 |
则0<
| 1 |
| -1+3•2n-2 |
| 1+1 |
| (-1+3•2n-2)+1 |
| 2 |
| 3•2n-2 |
| 1 |
| 2(-1+3•2n-2) |
| 1 |
| 3•2n-2 |
| 1 |
| 3•2n-2 |
| 4 |
| 3•2n |
∵Tn=
| a2 |
| a1 |
| a4 |
| a3 |
| a6 |
| a5 |
| a2n |
| a2n-1 |
∴Tn<2+(1+
| 1 |
| 4 |
| 4 |
| 3•23 |
| 4 |
| 3•2n |
| 1 |
| 4 |
| 4 |
| 3 |
| ||
1-
|
| 1 |
| 2n-2 |
=n+1+
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2n-2 |
| 19 |
| 12 |
| 4 |
| 3•2n |
| 19 |
| 12 |
点评:本题考查数列与不等式的综合,考查数列的通项公式,考查放缩法的运用,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关题目