题目内容
(2011•重庆三模)已知函数f(x)=
,若数列{an}满足an=f(an+1)(n∈N*),且a1=1.
(I)求证:数列{
}是等差数列;
(II)令bn=anan+1(n∈N*),设数列{bn}的前n项和为Sn,求使得Sn<
成立的n的最大值.
| x |
| 1-x |
(I)求证:数列{
| 1 |
| an |
(II)令bn=anan+1(n∈N*),设数列{bn}的前n项和为Sn,求使得Sn<
| 9 |
| 10 |
分析:(I)将条件an=
变形得
-
=1,根据等差数列的定义可知数列{
}是等差数列;
(II)由(I)知求出an=
,从而求出bn,然后利用裂项求和法求出{bn}的前n项和,根据Sn<
建立不等式,解之即可求出n的最值范围,即可求出所求.
| an+1 |
| 1-an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(II)由(I)知求出an=
| 1 |
| n |
| 9 |
| 10 |
解答:解:(I)由an=
⇒
=
=
-1得
-
=1
∴数列 {
}是首项为
=1,公差为1的等差数列
(II)由(I)知
=n,an=
∴bn=
=
-
∴{bn}的前n项和为:Sn=(1-
)+(
-
)+…+(
-
)=1-
由题知1-
<
解得n<9所以n的最大值为8.
| an+1 |
| 1-an+1 |
| 1 |
| an |
| 1-an+1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
∴数列 {
| 1 |
| an |
| 1 |
| a1 |
(II)由(I)知
| 1 |
| an |
| 1 |
| n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴{bn}的前n项和为:Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
由题知1-
| 1 |
| n+1 |
| 9 |
| 10 |
点评:本题主要考查了等差数列的判定,以及利用裂项求和法进行求和,同时考查了不等式的解法,属于中档题.
练习册系列答案
相关题目