题目内容
数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,总有an,Sn,an2成等差数列.
(1)求a1;
(2)求数列{an}的通项公式;
(3)设数列{bn}的前n项和为Tn,且bn=
,求证:对任意正整n,总有Tn<2.
(1)求a1;
(2)求数列{an}的通项公式;
(3)设数列{bn}的前n项和为Tn,且bn=
| 1 | an2 |
分析:(1)(2)由题意可得2Sn=an+
,利用an=
和等差数列的通项公式即可得出.
(3)由(2)可得bn=
.当n≥2时,bn<
=
-
,利用裂项求和即可证明.
| a | 2 n |
|
(3)由(2)可得bn=
| 1 |
| n2 |
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
解答:解:(1)∵对于任意的n∈N*,总有an,Sn,an2成等差数列.
∴2Sn=an+
,
令n=1,得2a1=2S1=a1+
,解得a1=1.
(2)当n≥2时,由2Sn=an+
,2Sn-1=an-1+
,
得2an=an+
-an-1-
,
∴(an+an-1)(an-an-1-1)=0,
∵?n∈N*,an>0,∴an-an-1=1,
∴数列{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n.
(3)由(2)可得bn=
.
当n≥2时,bn<
=
-
,
∴Tn<1+(1-
)+(
-
)+…+(
-
)=2-
<2.
当n=1时,T1=bn=1<2.
∴对任意正整n,总有Tn<2.
∴2Sn=an+
| a | 2 n |
令n=1,得2a1=2S1=a1+
| a | 2 1 |
(2)当n≥2时,由2Sn=an+
| a | 2 n |
| a | 2 n-1 |
得2an=an+
| a | 2 n |
| a | 2 n-1 |
∴(an+an-1)(an-an-1-1)=0,
∵?n∈N*,an>0,∴an-an-1=1,
∴数列{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n.
(3)由(2)可得bn=
| 1 |
| n2 |
当n≥2时,bn<
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
∴Tn<1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
当n=1时,T1=bn=1<2.
∴对任意正整n,总有Tn<2.
点评:熟练掌握利用an=
求an和等差数列的通项公式、放缩法、裂项求和等是解题的关键.
|
练习册系列答案
相关题目