题目内容

已知数列a1=1,an+1=an2+4an+2,
(1)求数列{an}的通项公式.
(2)设bn=
1
an+1
+
1
an+3
,设数列{bn}的前n项的和Sn.试证明:Sn<1.
分析:(1))由已知数列a1=1,an+1=an2+4an+2,变形为an+1+2=(an+2)2>0,两边取对数可得ln(an+1+2)=2ln(an+2),转化为等比数列即可得出;
(2)利用(1)变形,再利用“裂项求和”即可得出.
解答:解:(1)∵数列a1=1,an+1=an2+4an+2,
an+1+2=(an+2)2>0,
∴两边取对数可得ln(an+1+2)=2ln(an+2)
∴数列{ln(an+2)}是以ln(a1+2)=ln3为首项,2为公比的等比数列.
ln(an+2)=2n-1ln3
an+2=32n-1,即an=32n-1-2
(2)∵an+1=
a
2
n
+4an+2

an+1+1=
a
2
n
+4an+3
=(an+1)(an+3),
1
an+1+1
=
1
(an+1)(an+3)
=
1
2
(
1
an+1
-
1
an+3
)

1
an+3
=
1
an+1
-
2
an+1+1

∴bn=
1
an+1
+
1
an+3
=2(
1
an+1
-
1
an+1+1
)

∴Sn=2[(
1
a1+1
-
1
a2+1
)+(
1
a2+1
-
1
a3+1
)+
…+(
1
an+1
-
1
an+1+1
)]

=2(
1
a1+1
-
1
an+1+1
)
=2(
1
2
-
1
32n-1
)
=1-
2
32n-1

∵n∈N*,∴32n-1≥32-1=8>0
∴Sn<1.
点评:正确变形转化为等比数列、“裂项求和”等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网