题目内容
已知数列a1=1,an+1=an2+4an+2,
(1)求数列{an}的通项公式.
(2)设bn=
+
,设数列{bn}的前n项的和Sn.试证明:Sn<1.
(1)求数列{an}的通项公式.
(2)设bn=
| 1 |
| an+1 |
| 1 |
| an+3 |
分析:(1))由已知数列a1=1,an+1=an2+4an+2,变形为an+1+2=(an+2)2>0,两边取对数可得ln(an+1+2)=2ln(an+2),转化为等比数列即可得出;
(2)利用(1)变形,再利用“裂项求和”即可得出.
(2)利用(1)变形,再利用“裂项求和”即可得出.
解答:解:(1)∵数列a1=1,an+1=an2+4an+2,
∴an+1+2=(an+2)2>0,
∴两边取对数可得ln(an+1+2)=2ln(an+2)
∴数列{ln(an+2)}是以ln(a1+2)=ln3为首项,2为公比的等比数列.
∴ln(an+2)=2n-1ln3,
∴an+2=32n-1,即an=32n-1-2.
(2)∵an+1=
+4an+2,
∴an+1+1=
+4an+3=(an+1)(an+3),
∴
=
=
(
-
),
∴
=
-
,
∴bn=
+
=2(
-
),
∴Sn=2[(
-
)+(
-
)+…+(
-
)]
=2(
-
)=2(
-
)=1-
.
∵n∈N*,∴32n-1≥32-1=8>0,
∴Sn<1.
∴an+1+2=(an+2)2>0,
∴两边取对数可得ln(an+1+2)=2ln(an+2)
∴数列{ln(an+2)}是以ln(a1+2)=ln3为首项,2为公比的等比数列.
∴ln(an+2)=2n-1ln3,
∴an+2=32n-1,即an=32n-1-2.
(2)∵an+1=
| a | 2 n |
∴an+1+1=
| a | 2 n |
∴
| 1 |
| an+1+1 |
| 1 |
| (an+1)(an+3) |
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| an+3 |
∴
| 1 |
| an+3 |
| 1 |
| an+1 |
| 2 |
| an+1+1 |
∴bn=
| 1 |
| an+1 |
| 1 |
| an+3 |
| 1 |
| an+1 |
| 1 |
| an+1+1 |
∴Sn=2[(
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a2+1 |
| 1 |
| a3+1 |
| 1 |
| an+1 |
| 1 |
| an+1+1 |
=2(
| 1 |
| a1+1 |
| 1 |
| an+1+1 |
| 1 |
| 2 |
| 1 |
| 32n-1 |
| 2 |
| 32n-1 |
∵n∈N*,∴32n-1≥32-1=8>0,
∴Sn<1.
点评:正确变形转化为等比数列、“裂项求和”等是解题的关键.
练习册系列答案
相关题目