题目内容
已知向量| OA |
| OB |
| BA |
| OB |
分析:先求出A、B两点的坐标,再求
的坐标表示,代入已知的不等式进行化简,最后利用三角函数的范围求出λ的范围.
| BA |
解答:解:由题意知,A(λcosα,λsinα),B(-sinβ,cosβ),
∴
=(λcosα+sinβ,λsinα-cosβ),∵|
|≥2|
|恒成立,
∴(λcosα+sinβ)(λcosα+sinβ)+(λsinα-cosβ)(λsinα-cosβ)≥4,
λ2+1+2λcosαsinβ-2λsinαcosβ≥4,
λ2+2λsin(β-α)-3≥0,
∵|sin(β-α)|≤1,∴λ2+2λ-3≥0且λ2-2λ-3≥0,
解得,λ≤-3或λ≥1 且λ≤-1或λ≥3
∴λ≤-3或λ≥3.
故答案为:(-∞,-3]∪[3,+∞).
∴
| BA |
| BA |
| OB |
∴(λcosα+sinβ)(λcosα+sinβ)+(λsinα-cosβ)(λsinα-cosβ)≥4,
λ2+1+2λcosαsinβ-2λsinαcosβ≥4,
λ2+2λsin(β-α)-3≥0,
∵|sin(β-α)|≤1,∴λ2+2λ-3≥0且λ2-2λ-3≥0,
解得,λ≤-3或λ≥1 且λ≤-1或λ≥3
∴λ≤-3或λ≥3.
故答案为:(-∞,-3]∪[3,+∞).
点评:本题考查了向量的坐标运算,包括求向量以及向量的长度,在化简中用到了两角和差的正弦公式及正弦值的范围,来解决恒成立问题.
练习册系列答案
相关题目
已知向量
=(1,-2),
=(-3,4),则
等于( )
| OA |
| OB |
| 1 |
| 2 |
| AB |
| A、(-2,3) |
| B、(2,-3) |
| C、(2,3) |
| D、(-2,-3) |
已知向量
=(3,1),
=(2,-1),
⊥
,
∥
,则向量
=( )
| OA |
| OB |
| OC |
| OA |
| AC |
| OB |
| OC |
| A、(1,-3) |
| B、(-1,3) |
| C、(6,-2) |
| D、(-6,2) |